

Using Multiple HRSC Technologies to Develop a Detailed CSM for a Complex Fractured Bedrock Site

September 26, 2024 Science Advisory Board for Contaminated Sites in BC Kevin French, B.A.Sc., P.Eng VEI Contracting Inc.

Presentation Overview

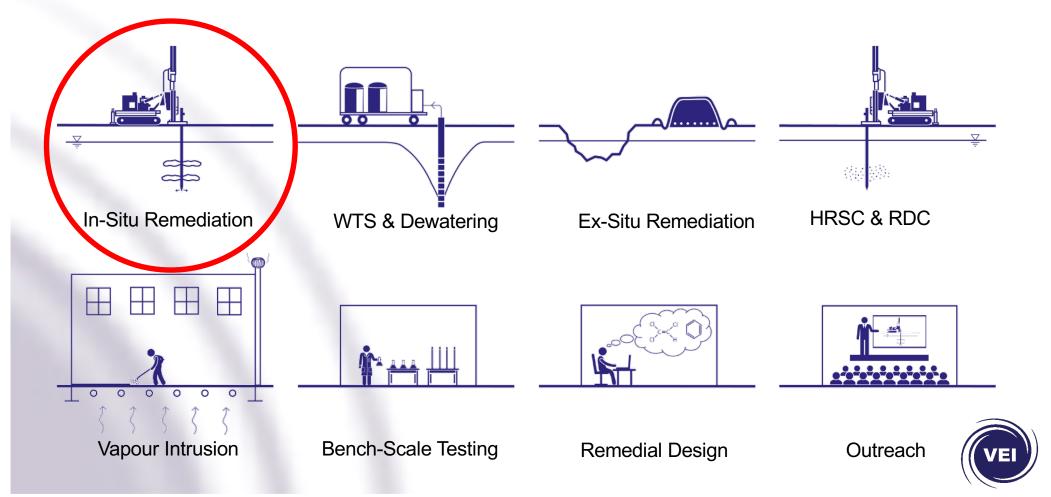
- VEI Contracting
- Site Background
- Remedial Objective
- Remedial Approach
- Initial CSM
- Additional Data Collection Activities
- Refined CSM
- Lessons Learned
- Questions

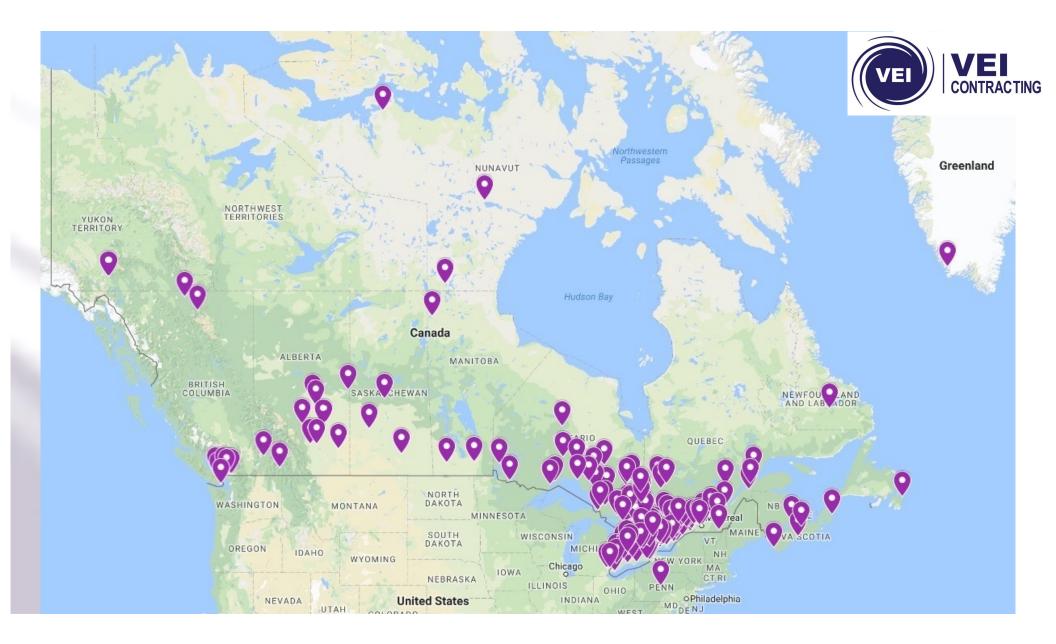
VEI Contracting

VEI Contracting Inc.

VEI Contracting Inc.

- (Formerly Vertex Environmental Inc.)
- Founded in 2003 (remedial injections)
- Specialized Environmental Remediation Contracting
- High Resolution Site Characterization (HRSC) and Remedial Design Characterization (RDC)




Kevin French, P.Eng

- Vice President, VEI Contracting Inc.
- B.A.Sc., Civil/Env. Eng., U. Waterloo
- Environmental engineering
 - Consulting starting 1988
 - Remediation contracting since 2012

VEI Contracting Inc.

Site Background

Site Background

- Confidential site owned by private individuals
- Single story commercial building currently used for warehousing
- Developed for industrial use in the 1970s for metal plating, metal fabrication, etc.
- Multiple former tanks and chemical storage areas
- Plume of chlorinated volatile organic compounds (cVOCs), mainly related to tetrachloroethylene (PCE), in bedrock groundwater

Remedial Objective

Remedial Objective

Remedial Objective:

- Owners want to be able to sell the site with no trailing liability
- Previous on-site remediation activities and risk assessment completed to demonstrate no unacceptable risks for continued commercial / industrial land uses
- Need to demonstrate that the plume of cVOCs in the bedrock groundwater is no longer migrating off-site
- Therefore, remediation (i.e., a permeable reactive barrier or PRB) required to allow due diligence to proceed and facilitate the sale of the property

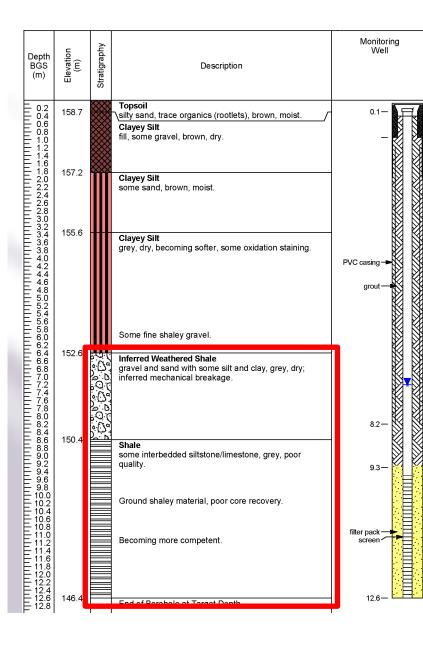
Remedial Approach

Remedial Approach

Remedial Approach:

- Plume of cVOCs in bedrock groundwater inferred to be migrating off-site to the east / southeast
- Sorbed impacts likely in the soil above the water table; not of concern for migration
- PRB needed to fully intercept and capture / treat cVOCs in bedrock groundwater before leaving the site
- Groundwater impacts are deep (i.e., ~12 m bgs) and located in a narrow strip of land between the site building and the sidewalk (i.e., underground services)
- To deep / expensive to shore and excavate; therefore, an injected approach preferred
- cVOC impacts in groundwater with likely sorbed mass in bedrock requires a particulate and persistent remedial amendment

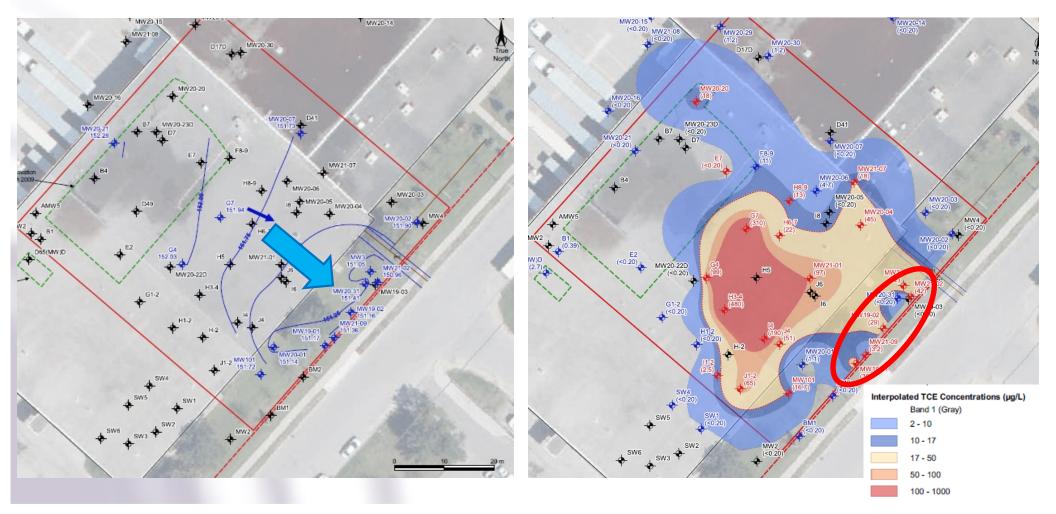
Initial Conceptual Site Model (CSM)


Initial CSM

Contamination Profile – Source:

- Source of cVOCs likely from former degreasing and plating area, but multiple source areas on-site possible
- Bulk of soil and perched overburden groundwater contamination located under the site building removed via excavation
- Bedrock groundwater contamination generally found in monitoring wells screened from 6-9 m bgs and 9-12 m bgs

Initial CSM


Geology/Hydrogeology:

- Native silty clay (to ~6.1 7.6 m bgs) over weathered / fractured shale, which becomes more competent below 11.0 – 11.9 m bgs
- Groundwater table at depths of approx. 7.0
 7.9 m bgs
- K values range from 1.2x10⁻⁶ to 3.7x10⁻⁸ m/s in shallow unit, though highly variable across the site
- Linear groundwater flow velocities estimated to range from 11 – 160 m/year across the site

Inferred Bedrock Groundwater Flow Direction

Interpolated TCE Distribution in Bedrock Groundwater

Initial CSM

Initial Remedial Injection Design:

- Target east / southeast portion of the site where cVOC plume in bedrock groundwater is leaving the property
- Target bedrock groundwater over depth interval of approx. 8.0 – 12.0 m bgs
- Two off-set rows of injection points on an approx. 4.6 m spacing
- Inject a 9% wt./wt. slurry of BOS 100® at a rate of approx. 650 L/m

Initial CSM

Data Gaps / Unknowns:

- Actual groundwater flow and transport conditions
- Vertical distribution of bedrock fractures and bedding planes
- Bedrock fracture porosity
- Interconnectivity of bedrock fractures and bedding planes
- Sorbed contaminant mass in bedrock
- Main contaminant flow zones, etc.

Therefore, a more refined CSM was required prior to remediation!

Injection Tracer Testing:

- A tracer injection test was completed to understand groundwater flow and transport conditions
- 2,000 L of a tracer solution containing 40 mg/L of Rhodamine WT dye and 8,000 mg/L of potassium bromide and chased with 100 L of water
- Injected at one existing well location ("I4") located to the southwest of the pilot-scale injection area and screened from 6.4 – 9.4 m bgs in the bedrock
- Injection pressure <5 psi and flow rate 5 10 L/min
- Monitored for visual, EC and Br for six months using loggers and via sampling in transgradient and downgradient monitoring well locations

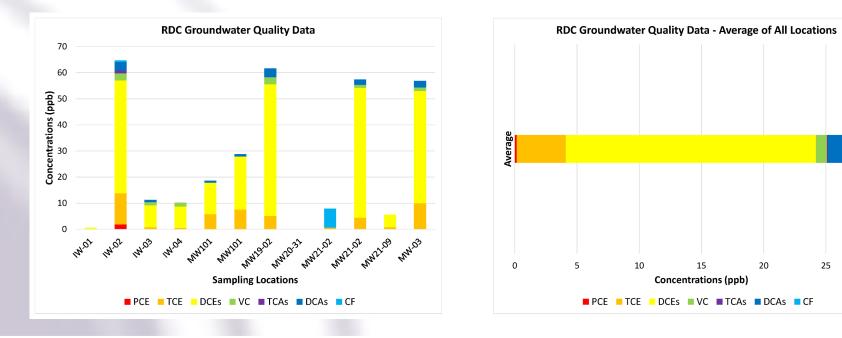
Injection Tracer Testing (cont'd.):

- No evidence of tracers detected at any location monitored within that timeframe
 - 8,000 mg/L of KBr was designed to result in an EC reading of approx. 4,000 to 5,000 µS/cm above background EC reading of ~3,000 µS/cm, but corresponding density effects may have affected tracer solution migration patterns
- Therefore, test was inconclusive, except in proving that groundwater flow may be less than ~6.1 m/yr in that area of the site and in that bedrock depth interval

Drilling and Sampling Activities:

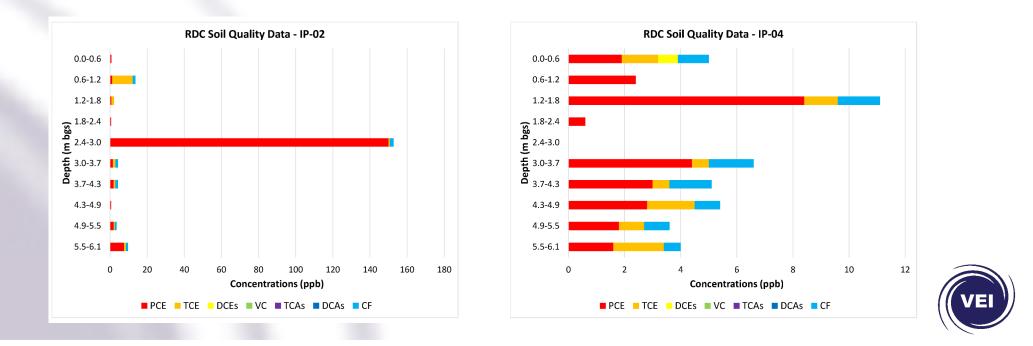
- Four bedrock injection points (IPs) installed at the site (i.e., IP-01 to IP-04)
- Continuous soil sampling at two locations (i.e., IP-02 and IP-04)
- Bedrock cored at one location (i.e., IP-01)
- 12.5 cm diameter PVC casings set in place into top of bedrock
- All IPs then drilled/cored into bedrock leaving a 10 cm diameter open hole from approx. 5.8 – 12.2 m bgs
- All IPs developed via purging and extraction using a vacuum truck to remove cuttings and develop the open bedrock holes

Drilling and Sampling Activities (cont'd.):

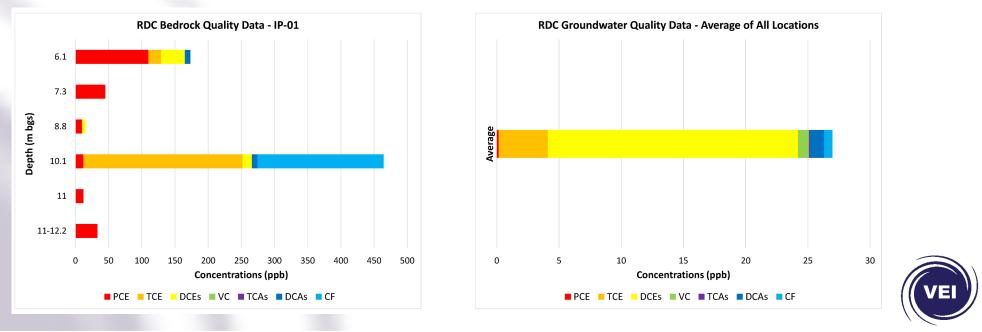

- Top of weathered shale bedrock encountered at approx. 5.5 – 6.1 m bgs
- Water table encountered at 6.0 7.8 m bgs
- At the cored location (i.e., IP-01) fracture zones in the bedrock were encountered from approx. 5.8 – 6.6 m, 7.0 m, 7.3 – 7.6 m, 8.8 – 9.3 m, 10.1 – 10.4 m bgs
- Therefore, visually more weathered and fractured near the bedrock / overburden interface and becoming more competent with depth (i.e., as expected)

Remedial Design Characterization (RDC) Sampling and Analysis:

- 20 soil, 6 bedrock and 10 groundwater samples submitted to Remediation Products Inc.'s (RPI's) laboratory Denver, CO for pro bono laboratory analyses of cVOCs
- Mainly dichloroethlyenes (DCEs) and trichloroethylene (TCE) detected in bedrock groundwater samples, with a small amount of vinyl chloride and some other cVOCs



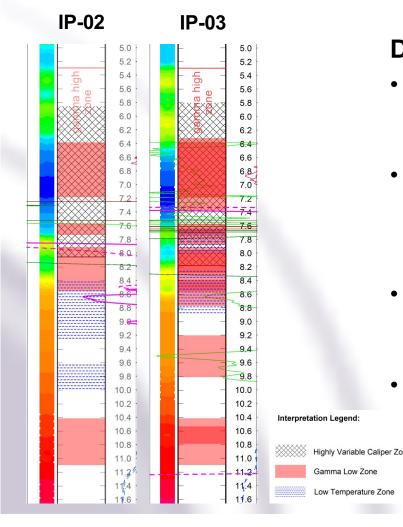
30


RDC Sampling and Analysis (cont'd.):

- Mainly tetrachloroethylene (PCE) and TCE detected in soil samples collected from above the groundwater table (i.e., below remedial criteria)
- Barely any DCEs and no VC detected; but chloroform (CF) also present in most samples

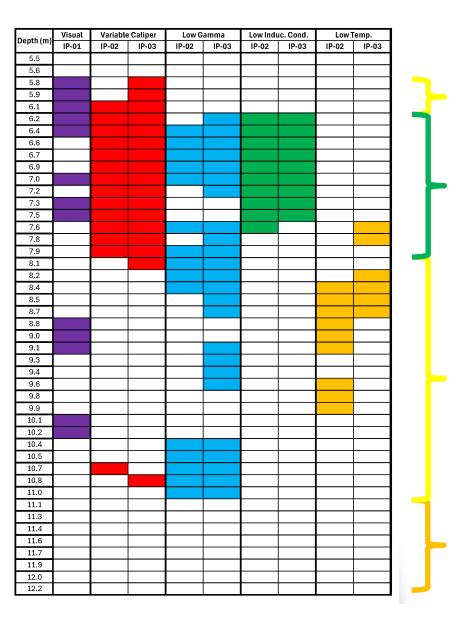
RDC Sampling and Analysis (cont'd.):

- Mainly PCE, TCE and CF detected in bedrock samples as well (i.e., below remedial criteria)
- Heavier molecular weight cVOCs are more predominant in the bedrock matrix as compared to bedrock groundwater quality
- Newly detected cVOC mass in bedrock needs to be accounted for in the PRB design



Downhole Geophysics:

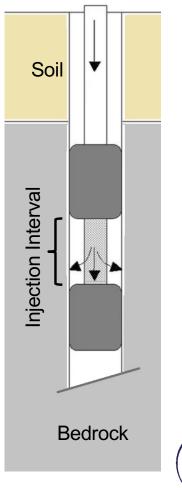
- Downhole geophysical surveys completed at locations IP-02 and IP-03 over a depth interval from approx. 6.1 – 12.2 m bgs develop a greater understanding of bedrock fracture conditions and flow patterns at the site
- Data collected included caliper, gamma, inductive conductivity, single point resistance, temperature, fluid conductivity, spontaneous potential and camera
- Highly variable caliper, low gamma, inductive conductivity and low temperature were the main readings used in conjunction with the camera to identify significant fracture and flow zones in the bedrock

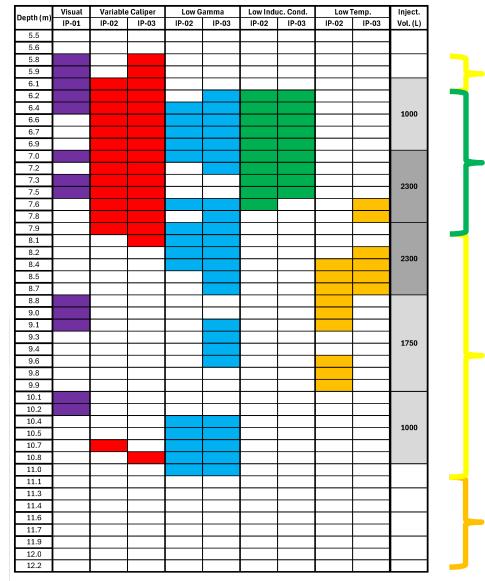


Downhole Geophysics (cont'd.):

- Highly variable caliper readings detected from approx.
 6.1 8.1 m and at 10.8 m bgs in IP-02, and from approx.
 5.8 8.2 m and at approx.
 11.0 m bgs in IP-03
- Low gamma readings detected from approx. 6.4 7.2 m, 7.6 7.8 m, 7.9 8.5 m and 10.4 11.1 m bgs in IP-01, and from approx. 6.2 7.2 m, 7.6 7.9 m, 7.9 8.8 m, 9.1 9.8 m and 10.4 11.1 m bgs in IP-03
- Low inductive conductivity readings detected from approx. 6.2 – 7.8 m bgs in IP-02, and from approx. 6.2 – 7.5 m bgs in IP-03
- Low temperature readings detected from approx. 8.4 9.3 m and 9.6 10.1 m bgs in IP-02, and from approx.
 7.6 7.9 m and 8.2 8.8 m bgs in IP-03

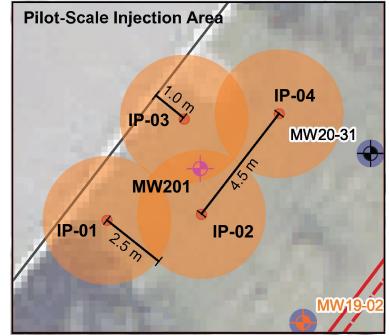
Downhole Geophysics (cont'd.):


- Results of downhole geophysics compared to visual assessment of bedrock fractures / beddings planes indicate:
 - Significant fracture and flow zones in the bedrock are located from approx. 6.2 – 8.1 m bgs, and
 - $\circ~$ To a lesser extent from approx. 5.8 6.2 m, 8.1-11.1~m~bgs
 - Likely no significant fracture or flow zones below approx. 11.1 m bgs


Pilot-Scale Injection Activities:

- 8,300 L of potable water containing 750 kg of Trap & Treat® BOS 100®, representing an approx. 9% wt./wt. slurry, was injected into the four IPs using pressure packer techniques to assess injection flow rates and pressures, injection radius of influence and treatment effectiveness
- Injections took place at various vertical intervals ranging from 6.1

 11.0 m bgs and at various loading rates ranging from 400 –
 1,400 L/m
- Injection pressures ranged from 50 500 psi, averaging 200 psi
- Injection flow rates ranged from 40 350 Lpm
- Visual presence of BOS 100[®] particulate observed at monitoring wells MW19-01 and MW21-09, located approx. 9.1 – 10.7 m away from the IPs during injection


Pilot-Scale Injection Activities (cont'd.):

- Pilot-scale injection program not completed exactly as planned
 - Slightly smaller diameter cored bedrock hole at IP-01 restricted packer deployment
- Part of the pilot-scale test was to assess injection volume / radius of influence relationship
- Most of the amendment volume was able to be injected in general accordance with expectations based on downhole geophysics

Performance Monitoring Activities:

- Following the pilot-scale injection testing activities a new monitoring well (i.e., MW201) was installed to a depth of approx. 11.9 m bgs in the center of the pilot-scale injection area
- Groundwater sampling and laboratory analysis was completed post-injection at MW201 as well as at five other monitoring wells (i.e., MW3, MW19-01, MW19-02, MW21-01 and MW21-02) for approx. 9 months (i.e., 5 – 6 sampling events each location)

Ι	/W201 (8.6 -	12.6 m bgs) (within inje	ection points	s)			
Date / Parameter	PCE	TCE	C12DCE	T12DCE	11DCE	VC		
2023-06-07	<	3.8	12	<	<	<		J.
2023-07-17	<	1.4	23	<	<	2.5		1
2023-08-21	<	1.7	14	0.5	<	1.3		
2023-08-21	<	2.0	14	0.5	<	1.4		
2023-10-02	<	5.2	25	0.5	<	1.6	The second	
2023-11-29	<	4.1	14	<	<	0.7	3	

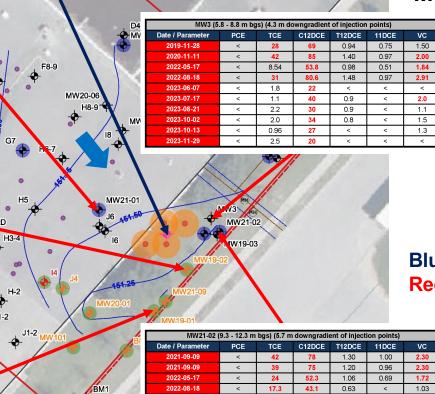
Post-Injection Groundwater Monitoring Results:

MW21-01 (7.0 - 9.1 m bgs) (9.2 m upgradient of injection points)							
Date / Parameter	PCE	TCE	C12DCE	T12DCE	11DCE	VC	
2021-09-08	<	97	150	3.10	2.20	8.50	
2022-05-17	<	72.3	166	3.96	2.200	9.75	
2022-08-18	<	83.7	215	3.41	2.34	11.2	
2023-06-07	<	94	230	6.0	4.1	23	
2023-06-07	0.6	95	240	6.1	4.3	23	
2023-07-17	<	120	490	12	5.5	30	
2023-08-22	<	110	290	8.6	3.7	19	
2023-10-02	<	97	300	6.5	2.4	15	
2023-11-29	<	100	180	4.8	3.3	11	

MW20-16

)-22D

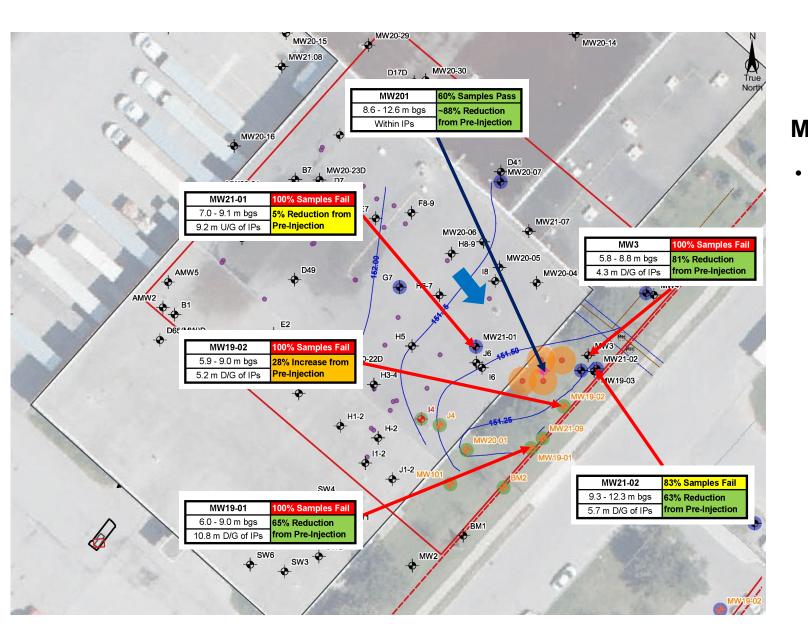
•


+ |1-2

MW2

MW 19-02 (5.9 - 9.0 bgs) (5.2 m downgradient of injection points)									
Date / Parameter	PCE	TCE	C12DCE	T12DCE	11DCE	VC			
2019-12-20	<	8.20	66	0.72	0.63	1.90			
2020-11-11	<	29	88	1.40	0.98	2.30			
2022-05-17	<	12.5	48.3	0.90	<	1.30			
2022-08-18	<	5.91	37.4	<	<	1.63			
2023-06-08	<	0.5	23	<	<	4.5			
2023-07-17	<	2.2	100	3.2	<	6.1			
2023-08-22	<	1.4	66	2.2	<	4.1			
2023-10-02	<	2.6	100	2.1	0.8	5.4			
2023-11-29	<	0.8	46	8.0	0.6	2.1			

MW19-01 (6.0 - 9.0 m bgs) (10.8 m downgradient of injection points)							
Date / Parameter	PCE	TCE	C12DCE	T12DCE	11DCE	VC	
2019-12-20	<	30	60	0.91	1.30	2.70	
2020-04-21	<	29	70	1.10	1.00	1.90	
2020-11-12	<	26	83	1.30	0.90	2.00	
2023-06-08	<	0.8	23	<	<	3.6	
2023-07-17	<	<	40	1.4	<	5.2	
2023-07-17	<	<	43	1.2	<	5.2	
2023-08-22	<	0.7	31	1.1	<	3.2	
2023-10-02	0.6	0.7	59	0.8	<	4.5	
2023-10-13	<	0.71	49	<	0.32	4.1	
2023-11-29	<	0.8	27	0.5	<	2.1	
2023-11-29	<	0.9	35	0.6	<	2.6	


Blue sampling date = Pass Red sampling date = Fail

MW21-02 (MW21-02 (9.3 - 12.3 m bgs) (5.7 m downgradient of injection points)									
e / Parameter	PCE	TCE	C12DCE	T12DCE	11DCE	VC				
2021-09-09	<	42	78	1.30	1.00	2.30				
2021-09-09	<	39	75	1.20	0.96	2.30				
2022-05-17	<	24	52.3	1.06	0.69	1.72				
2022-08-18	<	17.3	43.1	0.63	<	1.03				
2023-06-08	<	0.7	12	<	<	<				
2023-07-17	<	8.6	53	1.3	<	2.4				
2023-08-22	<	5.3	24	0.8	<	1.0				
2023-10-02	<	8.4	41	1.0	<	1.6				
2023-10-02	<	6.9	37	0.8	<	1.4				
2023-10-13	<	5.10	37	۷	0.32	1.5				
2023-11-29	<	2.7	20	<	<	<				

True

Post-Injection Groundwater Monitoring Results:

Following the pilotscale injection activities significant reductions in cVOCs observed at MW201 and good reductions in cVOCs observed at most other downgradient locations

Refined CSM

Refined CSM

Initial Geology/Hydrogeology:

- Native silty clay (to ~6.1 7.6 m bgs) over weathered / fractured shale, which becomes more competent below 11.0 – 11.9 m bgs
- Groundwater table at depths of approx.
 7.0 7.9 m bgs
- K values range from 1.2x10⁻⁶ to 3.7x10⁻⁸ m/s in shallow unit, though highly variable across the Site
- Linear groundwater flow velocities estimated to range from 11 – 160 m/year across the site, depending on assumed bedrock porosity

Refined Geology/Hydrogeology:

- Native silty clay (to ~5.5 6.1 m bgs) over weathered / fractured shale, which becomes more competent below 11.1 m bgs
 - Significant fracture and flow zones in the bedrock are located from approx. 6.2 – 8.1 m bgs
- Groundwater table at depths of approx.
 6.0 7.8 m bgs
- Groundwater flow velocity estimated at perhaps less than ~6.1 m/yr
- Sorbed mass of cVOCs in soil above groundwater table as well as heavier molecular weight cVOCs in bedrock below the groundwater table

Refined CSM

Initial Remedial Injection Design:

- Target southeast portion of the site where cVOC plume in bedrock groundwater is leaving the property
- Target bedrock groundwater over depth interval of approx. 7.9 – 12.0 m bgs
- Two off-set rows of injection points on an approx. 4.6 m spacing
- Inject a 9% wt./wt. slurry of BOS 100® at a rate of approx. 650 L/m

Therefore, the initial PRB design would have failed due to missing the upper bedrock groundwater zone!

Refined Remedial Injection Design:

- Target southeast portion of the site where cVOC plume in bedrock groundwater is leaving the property
- Target bedrock groundwater over depth interval of approx. 5.8 – 11.1 m bgs (i.e., shallower but thicker)
- Two off-set rows of injection points on an approx. 6.1 m spacing (i.e., wider so less drilling costs for 10 vs 14 IPs)
- Inject a 9% wt./wt. slurry of BOS 100® at a rate of approx. 1,050 L/m
- Cumulative changes results in increased BOS 100® loading of approx. 33% for the PRB

Lessons Learned

Lessons Learned

- Contaminated bedrock sites are complicated especially when needing to remediate via injection approaches
- Bedrock coring and downhole geophysics are crucial in identifying significant fracture and flow zones in the bedrock to be targeted by remedial injections
- RDC sampling and analysis can assist in identifying sorbed contaminant mass in the soil and/or bedrock matrix that can back diffuse over time and increase loading on remedial amendments
- **Pilot-scale injection testing** is used to confirm vertical injection intervals as well as assess full-scale design parameters (i.e., injection flow rates / pressures, injection ROI)
- Post-injection performance monitoring assesses effectiveness and longevity of treatment
- These additional data are then used to develop a final remedial design that carries a much higher degree of certainty in meeting performance objectives
- Bedrock remediation requires a particulate and persistent remedial amendment and, therefore, Trap & Treat® BOS 100® for cVOCs is preferred

Thank You for Your Time!

Questions?

Kevin French VEI Contracting Inc. (519) 404-5442

kevinf@vei.ca

www.vei.ca & www.vertexenvironmental.ca

