

14th Annual SABCS Workshop Vancouver, BC 25 September 2024

Development of a Light Absorption Model for Phototoxic PAHs

Parisa Jourabchi, Ph.D., P.Eng. Environmental Engineer

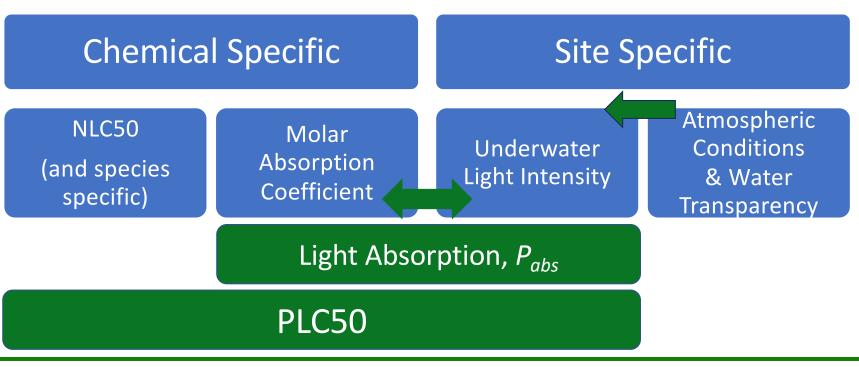
> ARIS Environmental Ltd. Vancouver, Canada



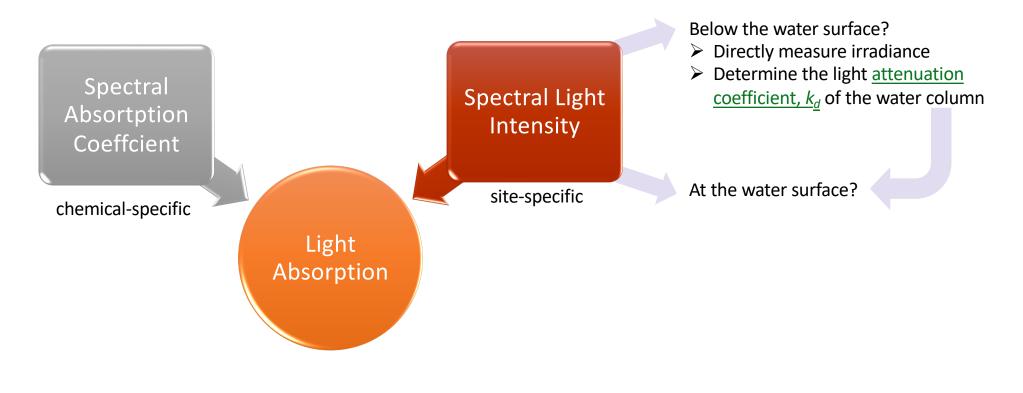
Acknowledgements

- Angeline Tillmanns (BC WLRS)
- Sasha Madronich (NCAR)
 US National Center for Atmospheric Research
- ➢ Jasen Nelson (BC ENV)
- Canadian Council of the Ministers of the Environment PAH Project Team, including:
 - Allison Dunn (ECCC)
 - Angeline Tillmanns (BC WLRS)
 - Janet Cermak (ECCC)
 - Yves Rochon (ECCC)

Water Quality Guidelines for Phototoxic PAHs


(target lipid model)

Site-Specific Light Absorption Model



Water Quality Guidelines for Phototoxic PAHs

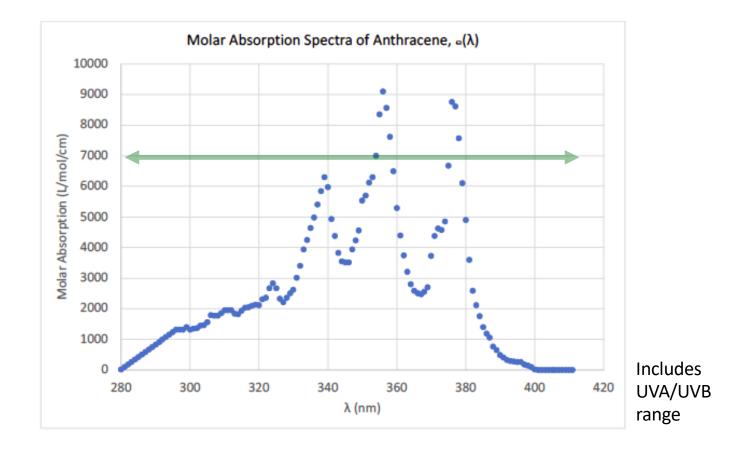
Phototoxic Target Lipid Model

Modified Tropospheric Ultraviolet and Visible (TUV) model

Solar position

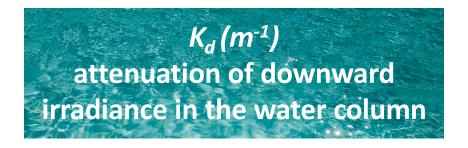
- Location
- > Date & time

Atmospheric conditions 🛛 🔽


- Cloud cover
- Ozone column
- > Aerosols

Water surface albedoImage: Colorado albedoWater depthImage: Colorado albedoExposure durationImage: Colorado albedo

K_d (m⁻¹)
Attenuation of downward
irradiance in the water column
as function of wavelength
for the range of applicable wavelengths


7

- - Measurements of downward irradiance using a radiometer (vertical profile) and exponential fit to the irradiance versus depth (Beer-Lambert expression)
 - 2. Remote sensing satellite data of reflectance
- ✓ 3. Estimated from the inherent optical properties (IOPs) related to the light absorbing & scattering components (or water quality parameters)

Results of the Literature Search - Summary

- Freshwater & Marine Environments
- Freshwater *k*_d model at reference wavelength (305 nm)

 $k_{d,305} = a_{305} [DOC]^{b_{305}} + k_{water}$

• Spectral k_d model (marine and freshwater)

 $k_d(\lambda) = k_{d,305} e^{S_k(305 - \lambda)}$

- Freshwater model validation
- Marine *k*_d model

Data Compilation – Freshwater Environment

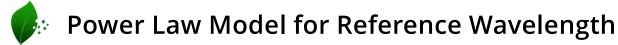
Study	DOC Range (mg/L)	<i>k</i> _d wavelength Or waveband (nm)	CHL-a (mg/m³)	TSS* (g/m³)	Number of locations	Paired DOC- <i>k</i> _d data	Use				
Morris et al (1995) Lakes in Alaska, Colorado, Pennsylvania, and Argentina		305		0.02 – 7.36 (PM)	45	45	MD & CV				
	0.24 –	320	0-5.1			64	V				
	23.5	340				64					
		380				63					
VBalogh et al (2009) Shallow lakes and ponds in Hungary		305	1.45 – 152.96	0.96 – 188.53 (TSS-Alg)		30	MD & CV				
	1.21 – 61.45	313					30				
		320			30	30					
		340				30	V				
		380					30		10 studies		
		395				30					
Smith et al (2004) Laurentian Great Lakes and tributary rivers		305			6	6	MD & CV	877 paired DOC – k _d data points			
	2.43 -	325	0.85 –			6		173 locations			
	8.00	340	13.1			6	V				
		380				6					

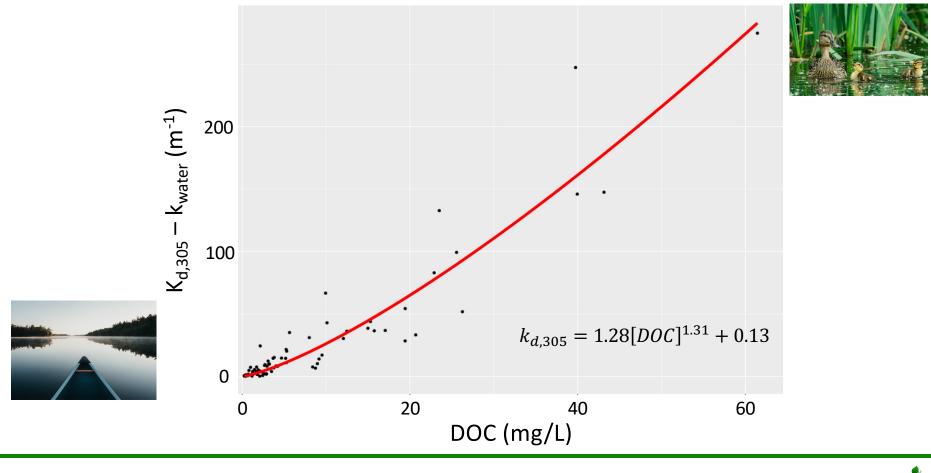
Model Development & Validation

Study	DOC Range (mg/L)	<i>k_d</i> wavelength Or waveband (nm)	CHL-a (mg/m³)	TSS* (g/m³)	Number of locations	Paired DOC- <i>k</i> _d data	Use	
Morris et al (1995)		305	0 – 5.1	0.02 – 7.36 (PM)	45	45	MD & CV	
Lakes in Alaska,	0.24 –	320				64		
Colorado, Pennsylvania, and	23.5	340				64	V	
Argentina		380				63		
		305	1.45 – 152.96	0.96 – 188.53 (TSS-Alg)	30	30	MD & CV	
VBalogh et al		313				30		
(2009)	1.21 –	320				30	v	
Shallow lakes and	61.45	340				30		
ponds in Hungary		380				30		
		395				30		
Smith et al (2004)	2.43 – 8.00	305	0.85 – 13.1	0.78 – 4.56	6	6	MD & CV	
Laurentian Great		325				6		
Lakes and tributary		340				6	V	
rivers		380				6		

model development & crossvalidation (MD & CV)3 studies, 81 datapoints

In-sample & out-of-sample validation (V) 10 studies, 877 datapoints




New Model with Combined Dataset

➢ Predicted light absorption sensitive to k_d ⇒ new model with expanded dataset

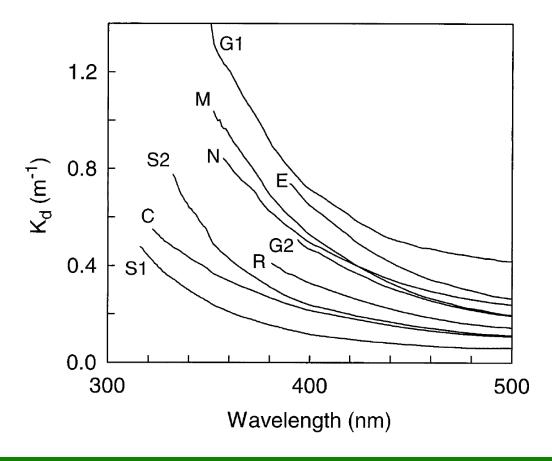
Model	Morris et al (1995) Study	All Data Combined
Number of data points	45	81
Standard deviation on <i>k</i> _d data	22.5	48.8
Residual Standard Error	4.65	16.17
Ø ₃₀₅	2.67	1.28
b ₃₀₅	1.25	1.31

Least-squares nonlinear fitting procedure

Leave-one-out cross validation (LOOCV) method

Model	Morris et al (1995) Study	All Data Combined
Number of data points	45	81
Standard deviation on k_d data	22.5	48.8
Root Mean Square Error (RMSE)	5.59	17.14
R ²	0.946	0.875
Mean Absolute Error (MAE)	3.01	8.65

- > Effect of other water quality parameters
- Model to data ratio
 - Various wavelengths
 - > In-sample and out-of sample (877 paired data points)



Additional Model Comparison

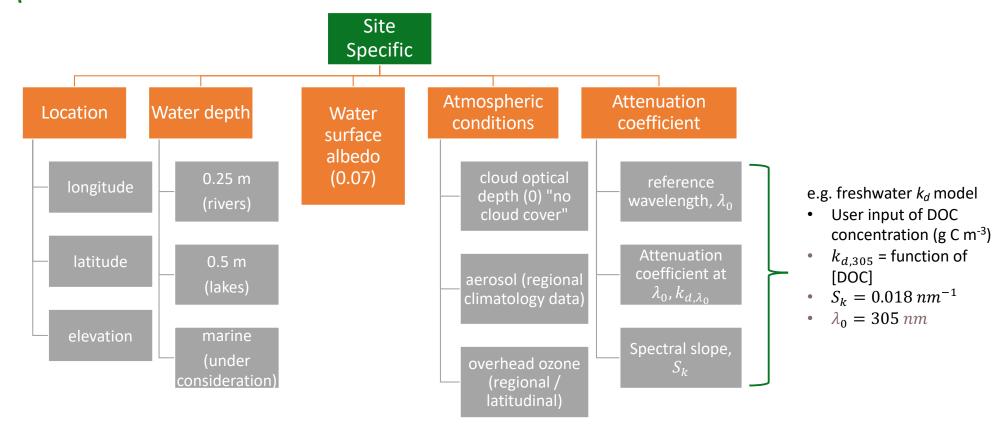
- Effect of other water quality parameters
- > Model to data ratio
 - Various wavelengths
 - In-sample and out-of sample (877 paired data points)

Model	Model : Data > 2	Model : Data < 0.5	Model : Data > 10	% over-estimated by factor > 2
Morris et al (1995) dataset	256	25	6	29
Combined model (81)	69	198	0	8

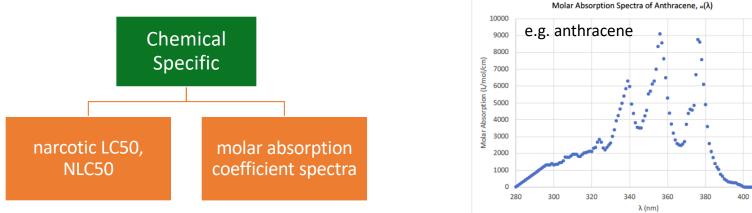
7 lakes in high arctic Canada & literature review

$$k_d(\lambda) = k_{d,305} e^{S_k(305 - \lambda)} + k_{back}$$

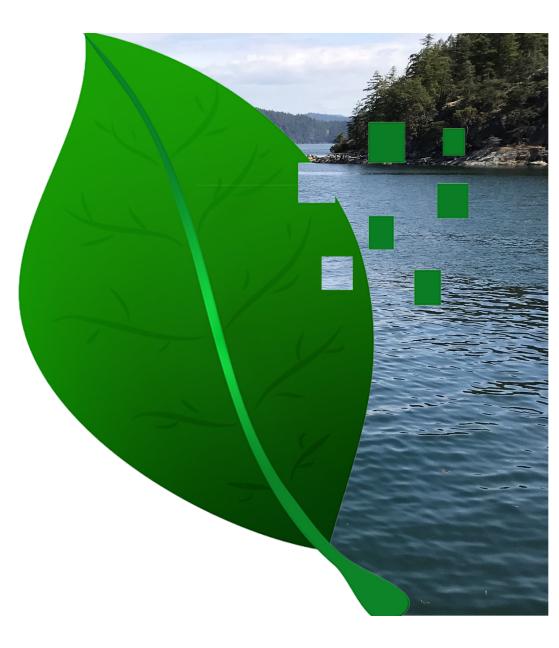
- > Function of CHL concentration (literature search and data analysis)
- > Applicable depth is low -> limited attenuation expected
- > Non-site specific default value:


$$k_{d,305} = 1.4 \text{ m}^{-1}$$

> Spectral k_d model (marine)


$$k_d(\lambda) = k_{d,305} e^{S_k(305 - \lambda)}$$
; $S_k = 0.014 \text{ nm}^{-1}$

> 48-hour exposure, June 21 (maximum daylight)


- Model discretization
 - Time (hourly)
 - Wavelength (1 nm)
- Key assumptions and limitations

420

Thank You

Parisa Jourabchi parisa@arisenv.ca 778-859-1121

