Methods to Enhance *Natural Source Zone Depletion (NSZD)* Rates: Heat, Oxygen, and More

Workshop on Nature-Based Solutions for Contaminated Sites

Sept 27, 2023

Charles Newell Kayvan Karimi Askarani GSI Environmental Inc. cjnewell@gsi-net.com

- Natural Source Depletion (NSZD): How it was Discovered and How it Works
- Adding Heat to Enhance NSZD
- Adding Oxygen to Enhance NSZD
- Experimental Concepts to Enhance NSZD

Monitored Natural Attenuation (MNA) versus Natural Source Zone Depletion (NSZD)

MNA typically focuses on <u>plumes</u>:

- Is plume stable?
- What is ultimate plume length?

GSI

ENVIRONMENTAL

Groundwater Mass Flux vs. Vapor Phase Mass Flux Horizontal Flux vs. Vertical Flux

Old NSZD Conceptual Model: It's all Horizontal Flux NSZD is mostly from dissolution to groundwater And it is very very slow....

Lundegard and Johnson (2006) Guadalupe Oil Field An Amazing Discovery

The vertical NSZD signal is **10x to 100x larger** than the horizontal NSZD signal!

Johnson & Lundegard:

- Idea: lets find pits using CO₂ flux
- It didn't work out as planned
- There is large upward vertical flux of CO₂ throughout the entire LNAPL zone!

Johnson et al., 2006; Lundegard and Johnson, 2006; ITRC, 2009

NSZD Applications: Five Methods

Acknowledgements: Poonam Kulkarni, GSI and Sanjay Garg, Shell

NAVFAC (2021) 10 Sites: Does the LNAPL Type Matter?

"With the exception of fuel-grade ethanol, the differences in median NSZD by fuel type (200,200 liquid; mixed LNAPL prude; gasoline, diesel/jet) were relatively small: 470 -1,310 gal/acre/yr"

"The range of NSZD rates within each fuel type (>10x) was higher than the range of median attenuation rates between fuel types (<4x) *suggesting that site factors other than fuel type are more important determinants of the NSZD rate at the site.*"

Fuel Type	Range of NSZD Rates Measured (gal/acre/yr)	u Melobia noNSZD DistinRatte Sgittel/sacre/yr)
Natural Gas Liquid	170 - 5,860	500
Mixed	190 - 6,100	470
Crude Oil	240 - 2,560	820
Gasoline	300 - 4,440	1,050
Diesel and Jet Fuel	70 - 10,630	1,310
Fuel-Grade Ethanol	13,200 - 16,300	14,700
Total	Median	935

NAVFAC, 2021

One Vision for "Enhanced Attenuation"

NSZD Conceptual Model (Most Sites)

by Sanjay Garg, Charles J. Newell, Poonam R. Kulkarni, David C. King, David T. Adamson, Maria Irianni Renno, and Tom Sale

Garg et al. (2017)

KEY PROCESSES

POTENTIAL CONTROLS

Wastewater Treatment Plant in Brooklyn, NY using anaerobic digesters

"The blue color is a symbol for calm, cleanliness, and purity, but it also serves to contrast the light of the city, which is predominantly amber or bright white "

Anaerobic Digesters: Set the Oven to 40 °C

Biodegradation Rates at ~ 2,000 Hydrocarbon Groundwater Sites

Kulkarni et al., 2021.

Sustainable Thermally Enhanced LNAPL Attenuation (STELA) Active Methods to Add Heat to the Shallow Subsurface

Thermal Conductance Heating

Electrical Resistance Heating

GSI

ENVIRONMENTA

Borehole Heat Exchangers

Colorado State Soil Heating via Vertical Resistance Heating Points

CSU Wyoming STELA Pilot Test

STELA Pilot Test for LNAPL Refinery Site

Source: Sale, 2011, Akhbari, 2013.

GSI **STELA Vertical Heating Elements – Configuration Options ENVIRONMENTAL** DRIFT GRID (may be less effective)

STELA Passive Methods to Add Heat: Soil Solarization

Figure 1. Overview of solarization in a field.

Fig. 1. Diurnal patterns of soil temperature at the 10-cm depth on DOY 195. Data are shown for each of the plastic mulches and the bare soil plot. Skies were clear.

Key Points:

- They want to kill weeds, pests.
- The agricultural field calls this plastic covering "mulch"
- Lots of technology on the placement and kinds of plastic

Personal field trial of soil solarization

Updates on Solarization Research

CSU: Maria Renno, Emily Stockwell, Daria Ahkbari, Nolan Platt, Christina Ankrom, Jay Ham and Tom Sale GSI: Poonam Kulkarni and Charles Newell 07/17/2015

CSU Soil Solarization "Temperature Only" Research

10 f

Chipped Asphalt

CSU field comparison of solarization approaches

CSU Soil Solarization Experiment Over 1 Year Subsurface Heating 1 ft bgs ~ 8 °C for Plastic.

GSI

ENVIRONMENTA

CSU Research: Effective Seasonal Benefits from Solarization

Figure 2. Effective Season for enhanced LNAPL biodegradation (> 18°C) by month and depth for two sizes of a combined Asphalt Chip + Clear Plastic cover: 30 ft by 30 ft (yellow squares) and 50 ft by 50 ft cover (orange squares). Blue squares show times/depths with soil temperatures exceeding 18°C under background (no cover) conditions. Source: Akhbari et al., 20140.

NSZD Conceptual Model (Most Sites) (Garg et al.,2017)

KEY PROCESSES

POTENTIAL CONTROLS

What about oxygen addition?

Bioventing Initiative Study Early 1990s

- Air Force Bioventing Study
- 178 Sites
- 1988-1995

PRINCIPLES AND PRACTICES OF BIOVENTING VOLUME I: BIOVENTING PRINCIPLES by Andrea Leeson and Robert E. Hinchee Battelle Memorial Institute Columbus OH

with contributions by

Bruce A. Alleman, Douglas C. Downey, Gregory Headington, Jeffrey A. Kittel, Priti Kumar, Lt Colonel Ross N. Miller, Say Kee Ong, Gregory D. Sayles, Lawrence Smith, Catherine M. Vogel

Bioventing Principle of Operation

Biodegradation Rates at 178 Bioventing Sites

Zero-order biodegradation rates calculated from oxygen utilization rates

	Initial (mg/kg-day)	After ~One Year (mg/kg-day)
Median	5.3	1.5
Mean	10.6	3.1
Minimum	0.1	0.1
Maximum	91.4	16.0

Bioventing Correlations And Oxygen Utilization Model

 $\log(O_2) = -2.7 + 0.39 \log(\text{NIT}) - 0.108 (\text{MOI}) +$

0.017 log (TPHsg) * MOI - 0.004 log (TPHsg) * TMP

PRINCIPLES AND PRACTICES OF BIOVENTING

VOLUME I: BIOVENTING PRINCIPLES

by Andrea Leeson and Robert E. Hinchee Battelle Memorial Institute Columbus OH

with contributions by

Bruce A. Alleman, Douglas C. Downey, Gregory Headington, Jeffrey A. Kittel, Priti Kumar, Lt Colonel Ross N. Miller, Say Kee Ong, Gregory D. Sayles, Lawrence Smith, Catherine M. Vogel

Passive / Semi Passive Bioventing Approaches Baroballs (left) and Microblowers (right)

Experimental Concept: A Geotechnical "Sewing Machine" for Accessing the Subsurface: Wick Drains

Wick Drains for Geotech Applications

- Used to dewater soils such as hydraulic fill
- Can put in 100s of these vertical sleeves (wick drains) per day
- Water travels up the channels between the wick drain fabric and the corrugated center piece.

Wick Drains for Passive Bioventing?

• Put hundreds of wick drains, that increases diffusion of oxygen into tight soils

Figure 7. GSI Environmental Engineer Luz Rocha with the section of wick drain. *Inset*: Duck-bill connector attached to the top of the wick drain.

Comparison of Passive/Semi-Passive Bioventing Technologies

Assuming 100 ft x 100 ft plot....

Preliminarymay change significantly

Table 1: Additional O2 Injected in Subsurface

Technology	Baseline O2 Diffusion (kg/yr)	Estimated Flow Rate (scfm)	Additional O2 Injection (kg/yr)	Increase Factor
Wick Drains	847		6,500	6.7
MicroBlowers	847	5	110,000	133
BaroBalls	847	0.5	9,400	10.1

625 Wick Drains: 4 foot spacing6 Microblower Wells: 20 ft spacing11 Baroball Wells: 15 foot spacing

GSI

ENVIRONMENTAL

Bioventing's Beneficial Side Effect?

- 1. Bioventing Heats the Unsaturated Zone,
- 2. Which Warms the Saturated Zone,
- 3. Which Can Increase Methanogenesis

Technology Development Pyramid (Cherry et al., 1996) Stages in the Evolution of New Remediation Technologies Proven Technology: *"Known Performance for a Known Price"*

C C S I ENVIRONMENTAL

Three MoreExperimental Conceptsto Enhance NSZD

- 1. Start with Anaerobic
 - **Bioreactors: Could**
- Recirculation
- Alone Help Mix Acetate, control pH?
- 2. Add "neutral red" to enhance methanogenesis? (Beckmann et al., 2016; Manefield lab)
- 3. Fluctuate water table to help methane bubble to surface?

Wrap Up: How to Enhance NSZD

SPARE SLIDES

Traditional Bioventing Configuration

Traditional Bioventing Configuration

	United States Environmental Protection Agency	Office of Research and Development Washington, DC 20460	EPA/625/XXX/001 September 1995		
\$EPA	Manual				
	Bioventin Practice	g Principles	s and		
	Volume II: Biove	enting Design			

Base	Site Type	Air Injection Depth (ft)	Air Injection Rate (cfm)	Area of Influence (ft ²)
Beale AFB, CA	Fire Training Pit	10 - 25	30	6,500
Bolling AFB, DC	Diesel Spill	10 - 15	20	5,100
Eielson AFB, AK	JP-4 Spill	6.5 - 13	30	43,600
Fairchild AFB, WA	JP-4 Spill	5 - 10	15	5,100
McClellan AFB, CA	JP-4 Spill	10 - 55	50	9,700
Plattsburgh AFB, NY	Fire Training Pit	10 - 35	13	11,500

NSZD Five Methods: A Quick Subjective Compare and Contrast

38

	Advantages?	Disadvantages?
1. The Gradient Method	Two ways: O_2 and CO_2	Need vapor probes, sensitive to soil D _e , need background correction, vertical 1D assumption not always valid
2. Dynamic Closed Chambers	Quick, good for spatial snapshot	Spatial, temporal variability, not applicable on paved surfaces, need background correction
3. Carbon Dioxide Traps	Easy to use, ¹⁴ C analysis (background correction)	Spatial, temporal variability, more difficult to apply to paved surfaces
4. Thermal NSZD Methods	Good temporal coverage, likely can use existing wells	Equipment cost, thermal conductivity estimate, need background correction if < 1 year of data
5. LNAPL Composition	No drilling needed, no background correction	Need LNAPL compositions from same location over long periods of time intervals (>5-10 yrs)

Comparison of Four NSZD Methods (Kulkarni et al., 2020)

BaroBalls

Inverted BaroBall

- Typical flowrates: 0.1 1.0 scfm
- Relies on atmospheric pressure gradients – one way flow expected 50% of time
- Cost per Unit: ~\$200

"Application of Four Measurement Techniques for NSZD" (Kulkarni et al., 2020)

Kulkarni et al. (2020)

Monitoring&Remediation

Application of Four Measurement Techniques to Understand Natural Source Zone Depletion Processes at an LNAPL Site

by Poonam R. Kulkarni, Charles J. Newell, David C. King, Lisa J. Molofsky and Sanjay Garg

Table 1 Measurement Methods and Time Period of Installation at Each Location							
Location	Location Carbon Trap Gradient Method ¹ DCC LI-COR ¹ Thermal NSZD ¹ IsoFlask Sampling						
L2	2 events + Duplicate	2 events	2 events	Continuous 1 year	2 events		
L4	2 events	2 events	2 events	Continuous 1 year	n/a		
L5	2 events	2 events	2 events	Continuous 1 year	2 events		
L8 ²	_	_	_	_	2 events		
L9 ²	—	_	_	_	2 events		

40

GSI

ENVIRONMENTAL

		THERMAL NSZD		CARBON	TRAPS
	Variable	Spearman's r and p-value	Confidence in Trend	Spearman's r and p-value	Confidence in Trend
	Maximum	(0.7)		(0.2)	
	IPH Concentration in Soil	0.05	High	0.55	Low
	Depth of	(0.5)		(0.7)	
	Maximum TPH	0.17	Limited	0.06	High
	Benzene	(0.5)		(0.7)	
	Concentration in Groundwater	0.10	Limited	0.01	High
	% ROST	(-0.6)		(-0.6)	
	Signal in Unsaturated Zone	0.05	High	0.04	High
	Specific Volume	(0.3)	Low	(0.4)	Limited
		0.40		0.27	
	Lithology: %	(-0.3)	Low	(-0.4)	
	Fines (Silts and Clays)	0.45		0.19	Limited
		(-0.6)		(-0.7)	
	Lithology: % Clay	0.07	High	0.02	High
	pC17:	(0.3)		(0.6)	
	Pristane Ratio	0.46	Low	0.08	High
		(0.5)		(-0.1)	
	Portion of TPH with >nC12 (%)	0.15	Limited	0.91	Low

Noise: A Flaw In Human Judgment (Kahneman, Sibony, and Sustein, 2021)

Kahneman, Sibony and Sunstein argue that noise in human judgment is a thoroughly prevalent and insufficiently addressed problem in matters of judgment. They write that noise arises because of factors such as <u>cognitive biases</u>, <u>mood</u>, <u>group</u> <u>dynamics</u> and <u>emotional reactions</u>. While contrasting <u>statistical bias</u> to noise, they describe <u>cognitive bias</u> as a significant factor giving rise to both statistical bias and noise. (Wikipedia)

KEY PROCESSES

POTENTIAL CONTROLS

NSZD Conceptual Model (Most Sites)

(Garg et al.,2017)

