

Hznano

Passive Sunlight-Driven Remediation via Solar Photocatalysis

Jeffrey Martin¹, Zac Young¹, Tim Leshuk¹, Frank Gu^{1,2}

¹ H2nanO Inc., ² University of Toronto

SABCS Conference & Workshop

September 27-28, 2023 | Vancouver, Canada

H2nanO Inc.

Kitchener, ON | Edmonton, AB www.h2nano.ca

Passive, naturally powered water treatment and emissions control technology.

Solar Advanced Oxidation

High strength, passive light-activated oxidation treatment.

)asis

Reactive Emissions Barrier

Emissions and odor trapping and treatment for water.

Enhanced Evaporation

Passive acceleration of solar-thermal evaporation.

SABCS Workshop & Conference 2023 | Vancouver, Canada | Sep. 27-28, 2023

How Photocatalysis Works

- Photocatalyst produces oxidants from water
 - Hydroxyl radicals, HO•
 - Superoxide radicals, O₂^{-•}
- Buoyant substrate for deployment and collection.

3

Technology Deployment

- H2nanO materials are deployed onto the surface as a slurry.
- Modular operation for expandable ponds, tanks, or lagoons.

Example Lagoon Operation

4

High-Strength Oxidation Powerful, tailored treatment.

Sunlight Activated Off-grid, direct sunlight power.

COD

TOC

BTEX

Phenols

PAHs

Ammonia

© H2nanO Inc.

Se Bio-availability

SABCS Workshop & Conference 2023 | Vancouver, Canada | Sep. 27-28, 2023

Manganese

H₂S

High-Strength Oxidation Powerful, tailored treatment.

COD

TOC

BTEX

Effective Removal of Recalcitrant Organics

Se Bio-availability

Treatment of Recalcitrant Organics in Oil Sands Process Water (OSPW)

Passive Treatment at Mine Scale

- >470M m³ of process water stored in these surface tailings ponds.
- The process water contains organics of environmental concern.
- Toxicity linked to long chain organic acids (i.e., naphthenic acids).
- Passive treatments are desired by operators.

Prototype Trial Demonstrates OSPW Detoxification – 800 L

Pilot Trial: 800 L scale Study Location: Waterloo, ON

100% organics elimination possible, but not necessary. UV Dose (kJ L⁻¹) 60 20 40 80 ()100% 25 Relative Conc. (C/C₀) Full trout & minnow $\mathsf{AEO}_{\mathsf{FTIR}}$ survival Дğ $\mathsf{NAs}_{\mathsf{MS}}$ 80% 20 No inhibition measured or Toxicity COD 60% рС 15 **Rainbow Trout** 0 Mortality 40% 10 **Fathead Minnow** O_{FTIR} Mortality 20% 5 **Fathead Minnow** Ш **Growth Inhibition** 0% 16 6 8 10 12 14 0 UV Dose (equiv. days) AEO = Acid extractable organics NA = Naphthenic acids COD = chemical oxygen demand

SolarPass Proven for OSPW Detox. at Pilot Scale – 40,000 L

Pilot Trial: ~40 m³/day scale Study Location: Edmonton, AB

OSPW – 1 Day Treatment Threshold

SABCS Workshop & Conference 2023 | Vancouver, Canada | Sep. 27-28, 2023

9

Passive Polycyclic Aromatic Hydrocarbon (PAH) Treatment

90% PAH removal after 2 weeks passive treatment (ppb level conc.)

Photocatalysis Enhances Existing Treatment Systems – Se Removal

Photocatalysis evaluated for wetland polishing to • remove organoselenium by-products

Water

- Organoselenium compounds are up to 10,000x more bio-available than selenate
- Rapid removal of OrgSe to <10 ppt using ٠ SolarPass

11

Photocatalysis Applications for Trace Elements

Aqueous Mn(II) Effectively Removed via Photocatalysis (PC)

Mine-Water Sample	Mn Initial (mg/L)	Removal Rate (g/m²/d)	Removal %
Sample 1	345	0.82 ± 0.16	35
Sample 2	9.3	0.35 ± 0.09	90

Initial

3

Sample 2 treatment results at pH 6.5. Control performed under similar UV and mixing without photocatalyst.

SABCS Workshop & Conference 2023 | Vancouver, Canada | Sep. 27-28, 2023

Co-Treatment of Additional Trace Elements Demonstrated

98% Zn removal at pH 7.5 (23 mg/L initial)

99% Mo removal at pH 6.5 (1 mg/L initial)

© H2nanO Inc.

SABCS Workshop & Conference 2023 | Vancouver, Canada | Sep. 27-28, 2023

Photocatalysis and Biological Treatment at Pilot Scale

Solar Photocatalysis Summary

- Photocatalysis is an effective treatment solution for organics
 - Demonstrated at scale (40 m³, >500 m²).
- Floating photocatalytic barrier effective for volatiles containment and treatment.
- High strength oxidation comparable to ozone or UV/H_2O_2
- Reduced CAPEX and OPEX.

16

Thank you – Questions?

Applications

Petroleum Hydrocarbons Polycyclic Aromatic Hydrocarbons (PAHs) BTEX & Volatile Organic Carbons (VOCs) Trace Elements

Contact: Jeff Martin

jeff@h2nano.ca | 1-226-887-8778 x 130 | www.h2nano.ca 17