CENTRE CANADIEN DES SERVICES CLIMATIQUES

Contaminated Sites: Taking Future Climate Into Account, Finding and Using Climate Data

SABCS Conference on Contaminated Sites Sept 21, 2022

Ellen Pond, Training Lead - CCCS Cary Pomeroy, Data Products - CCCS

What we'll cover today

Learning Objectives

- Help you build your understanding of climate information, including how to access future climate data.
- Explore ways to use future climate data to support contaminated sites management, remediation, custodianship.

Presentation Agenda

- 1. Introduction to climate services and climate information
- 2. Recent extreme events, some climate projections for BC
- 3. Climate data & online tools move into workshop activities

Canadian Centre for Climate Services

- **Support Desk** to help answer your questions and find the right datasets
- Website with:
 - ✓ Access to climate data portals
 - ✓ Links to 300+ resources
 - ✓ Intro to climate information concepts
- Training and guidance for using climate data
- Co-development of new data products
- Collaboration with regional climate organizations to co-deliver services with locally-relevant information to users

"Provides Canadians with information and support to consider climate change in their decisions."

www.canada.ca/climate-services

Pacific Climate Impacts Consortium | pacificclimate.org

CENTRE CANADIEN DES SERVICES CLIMATIQUES

Regional Climate Service Provider

- Regional climate service provider
- Launched 2005; sister organization to Pacific Institute for Climate Solutions (PICS)
- Partner with researchers and users of climate information

- **Regional Climate Impacts**
- developing, providing, and interpreting future projections of regional climate change

- Hydrologic Impacts
- quantifying the hydrologic impacts of climate change and variability

- Climate Analysis and Monitoring
- serving the need for past climate information and its interpretation

Computational Support Group

- enabling high speed computing on large datasets, developing online tools, and maintaining open-source code

Weather vs Climate

Climate = long term statistics of weather

CANADIAN CENTRE FORCECLIMATE SERVICESSE

CENTRE CANADIEN DES SERVICES CLIMATIQUES

The climate is changing

- Effects of widespread warming are evident in many parts of Canada and are projected to intensify in the future
 - World temperature has increased by over 1°C in past 150 years
 - Canada has warmed at 2X the global rate, 3X in the North
- These changes can bring significant impacts and risks
- Climate data and information helps to understand and plan for these changes

Increase in annual average temperature in Canada between 1948 and 2016. Source: Canadian Gridded Temperature and Precipitation Anomalies (CanGRD)

CLIMATE CHANGE IS BOTH:

1) The change in average conditions over long time periods, like changes in in average precipitation or in sea levels.

2) The change in extreme events with different intensity and frequency, like changes in extreme rainfall.

Figure: ECCC AHCCD for Comox, BC

CANADIAN CENTRE FORCENTRE CANADIEN DESCLIMATE SERVICESSERVICES CLIMATIQUES

What are climate projections, and where do they come from?

CANADIAN CENTRE FORCENTRE CANADIEN DESCLIMATE SERVICESSERVICES CLIMATIQUES

What are climate projections, and where do they come from?

We can represent the range of model outputs using multi-model ensembles

EMISSIONS SCENARIOS AND DECISION-MAKING

BC: Historical Average Temperature → Future Temperature

Summary:

1. Conditions keep changing with time in all but best case.

2. Must accommodate wider range of conditions in all cases.

3. Past conditions are not a good guide for future conditions.

BC: Historical Average Temperature → Future Temperature

Summary:

1. Conditions keep changing with time in all but best case.

2. Must accommodate wider range of conditions in all cases.

3. For example, by 2050 there is a wider range than the historical period.

BC: Historical Average Temperature → Future Temperature

Summary:

1. Conditions keep changing with time in all but best case.

2. Must accommodate wider range of conditions in all cases.

3. By 2100 the range of outcomes has expanded even further.

Precisely Wrong vs Generally Accurate

"Past data are known quantities"

"Forecasts have uncertainties"

Checking in: questions?

CANADIAN CENTRE FOR **CLIMATE SERVICES** CENTRE CANADIEN DES SERVICES CLIMATIQUES

Summer Heat Dome

- In the summer of 2021, observed temperatures at many locations were far outside the range of historically observed temperatures
- It is estimated that this event would occur roughly once in a thousand years in today's climate; it would have been at least 150 times rarer in the absence of humancaused climate change
- In a future world, with global mean temperatures 2°C above preindustrial, such an event could occur once every 5-10 years

Attribution results and figure from: <u>www.worldweatherattribution.org</u> – an international group of climate scientists who undertake rapid extreme event analyses. Summer 2021 Heat Dome: Observed temperature anomalies relative to average highest daily temperature: dark red dots are stations with temperatures more than 5°C greater than average highs

CANADIAN CENTRE FORCENTRE CANADIEN DESCLIMATE SERVICESSERVICES CLIMATIQUES

November 2021- Atmospheric River

- A 1-in-50 to 1-in-100 year event
- A compound extreme event;
 - Intense precipitation
 - Existing wet conditions
 - Snowmelt at higher elevations.
- Maximum values of extreme streamflow exceeded 1-in-100 year values at several basins
- Probability of such events has increased by about 50% due to climate change
- With about 3°C warming, the event will be 150%-300% more likely

University of Victoria

Climate Projections – British Columbia

Warmer winters, fewer days below freezing

More hot summer days, longer dry spells in summer

More precipitation in the fall, winter, and spring

Increased frequency and intensity of precipitation and storm events

Climate Projections – Metro Vancouver

- Wetter winters, particularly fall
- Drier summers
- Reduced snowpack

Meters

0 to 0.25 0.25 to 0.5

0.5 to 1

Available Data: PCIC Climate Explorer

Available Data: PCIC Design Value Explorer

				PACIFIC CLIMAT MPACTS CONSORTIU	Design Val	ue Exp	lorer					
Design Variable	HDD Heating degree	e days below 18 °C	-	r								
Map Table C-2	Help About											
Overlay Options Period Historical design values Future change relative t	; to 1986-2016	Global Warming 0.5°C above 1986-2016	Stations BISTORICAL ONLY	Grid	Colour Scale Op Colour Map RdBu	tions	Scale Linear	Num. Colours	100	Range: 2630 to	0 12540 0 0 0 0 6590 8580	0 0
		HDD Heating degree days be	low 18 °C (°C-day) • Historical		• • • □ □ × ↔	Data Hover of	a from map pointer	r ursor. Click to hold design values fo	r download.			
								Download this data				
					12500	Lat	80.230365	Lat 53.855402				
			i de la companya de l				12.55555	Historical design values				
								Design value	Units	Interpolation value	•	
					10600			DRWP5	Pa	80		
	2		Sales and a second s		9570			HDD	°C-day	6900		
								IDFCF	ratio	n/a		
530 550								MI		0.625		
							PAnn	mm	550			
							R1d50	mm	75			
							R15m10	mm	19			
						RAnn	mm	385				
							RL50	kPa	0.1			
March March Reit					4610			RHAnn	96	74		
								SL50	kPa	kPa 3		
2630						2630		TJan1.0	°C	-38		
								TJan2.5	°C	-36		
								TJul97.5	°C	27		
								TwJul97.5	°C	20		
								Tmax	°C	24		
								Tmin	°C	-34		
								WP10	kPa	0.2		
								WP50	kPa	0.2		

Kari Tyler <u>ktyler@uvic.ca</u>

Sign up for our mailing list at pacificclimate.org

Make use of available climate information

Consider a range of future projections

Practice cross-disciplinary engagement

you can't always get what you want

University of Victoria

Learn and iterate

CLIMATEDATA.CA

Climate Data

- Download and view climate data ٠
- High resolution climate data ٠
- Temperature and precipitation variables and climate ٠ indices
- Sea level rise ٠
- Observed climate normals and daily data download ٠
- Intensity Duration Frequency (IDF) curves ٠
- Local and national scale charts and maps ٠
- Ability to compare emission scenarios ٠
- Customizable tools to analyze and extract data ٠

Helpful Resources

- Sector modules with tailored case studies ٠
- Learning Zone ٠

Additional resources

Federal Contaminated Sites Action Plan (FCSAP)

Integrating Climate Change Adaptation Considerations into Federal Contaminated Sites Management Version 1.0

<u>Chapter 5 — Regional Perspectives Report</u> (changingclimate.ca)

https://publications.gc.ca/collections/collecti on_2022/eccc/En14-487-2022-eng.pdf

CENTRE CANADIEN DES SERVICES CLIMATIQUES

Environnement et Changement climatique Canada

Canada

BREAK! COME BACK FOR THE WORKSHOP

ccsc-cccs@ec.gc.ca

EN: canada.ca/climate-services

FR: canada.ca/services-climatiques

CANADIAN CENTRE FOR **CLIMATE SERVICES**

CENTRE CANADIEN DES SERVICES CLIMATIQUES