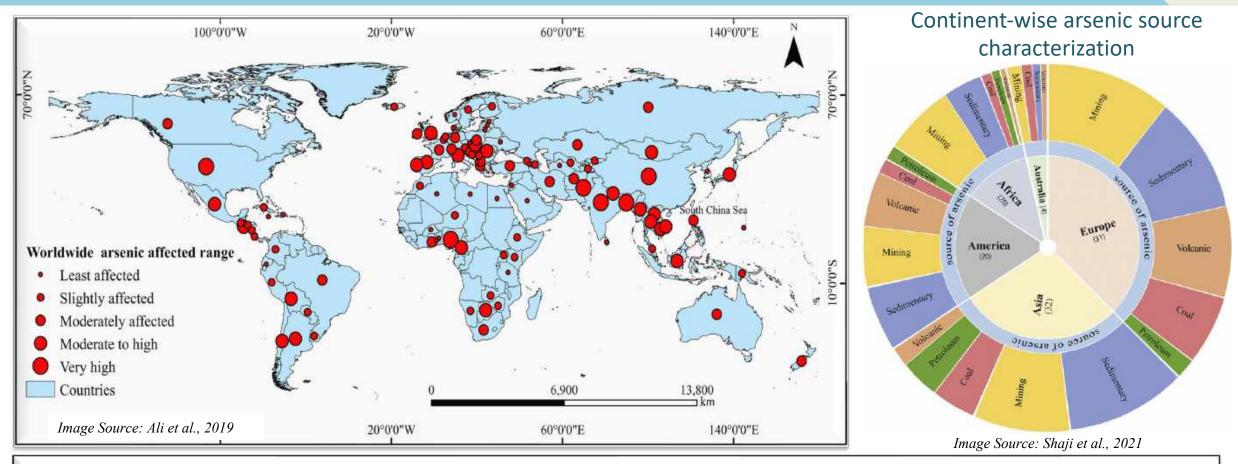
Arsenic in Groundwater: Impact on Agro-ecosystem and Low-cost Removal Option in the Perspective of Bangladesh

Samia Syeoti Ramim PhD Student, UBC

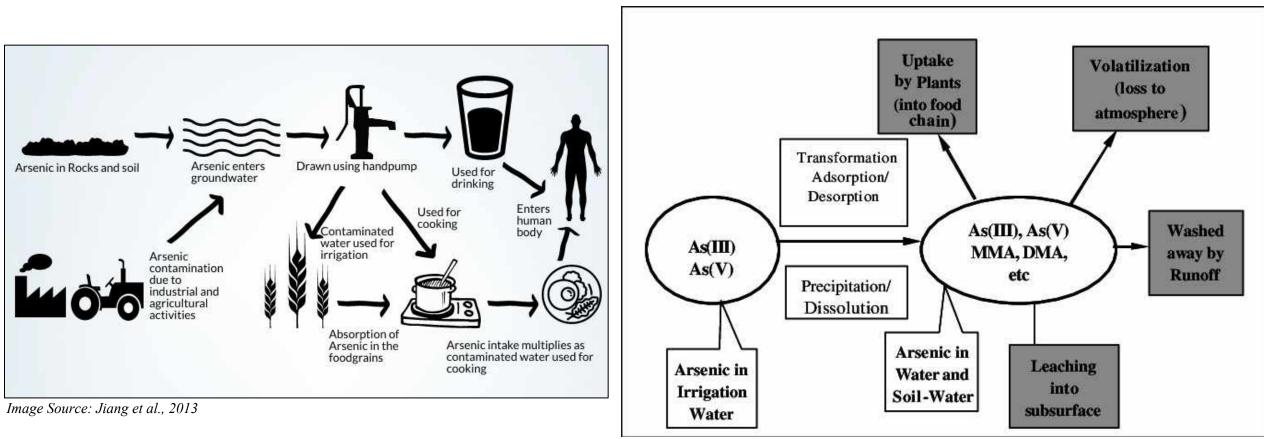
12th Annual SABCS Conference on Contaminated Sites


September 22, 2022

Agendas

Background (Arsenic Contamination and Impact on Agro-ecosystem)

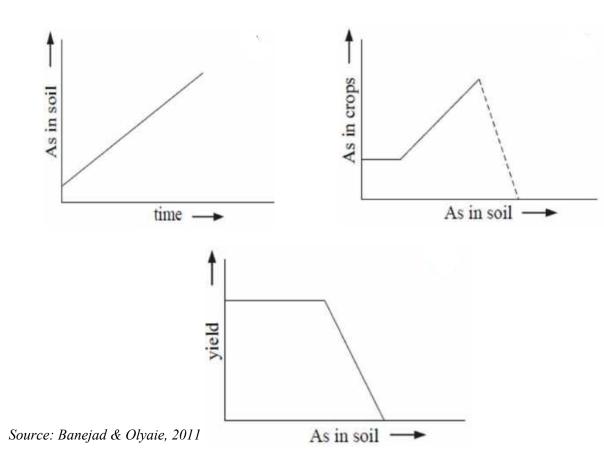
- Arsenic Contamination in Groundwater
- Impact of Arsenic on Agro-ecosystem
- Arsenic Contamination in Bangladesh
- Impact of Arsenic on Agro-ecosystem in Bangladesh
- Studies on Arsenic Removal from Irrigation Water
- Study on Low-cost Arsenic Removal
 - Experimental Objectives
 - Methodology
 - Experimental Design
 - Results & Findings
 - Field Implementation Concept
 - Follow-up Researches
 - Conclusion
 - Suggestions for Future Works


Background: Arsenic Contamination in Groundwater

- 108 countries affected by arsenic contamination in groundwater¹
- More than 90% of arsenic pollution is geogenic¹
- Ranks number one in the 2001 priority list of hazardous substances and disease registry defined by WHO
- Maximum permissible limit: 10 ppb (10μg/L) (recommended by WHO)

Background: Arsenic Contamination in Groundwater

Fate of Arsenic in Soil-Water Environment



Exposure Pathways of Arsenic in Groundwater

Source: Ali et al., 2003

Background: Impact of Arsenic on Agro-ecosystem

Potential effect of arsenic contaminated irrigation water on agricultural soils

Years of irrigation	Arsenic in irrigation water (ppb)				
	50	100	250	500	1000
	Arsenic added to soil (µg/g)				
1	0.28	0.56	1.4	2.8	5.6
5	1.4	2.8	7	14	28
10	2.4	5.6	14	28	56
20	5.6	11	28	56	110
30	8.4	17	42	84	170
50	14	28	70	140	280

Source: Brammer & Ravenscroft, 2009

Daily consumption of rice with a total As level of 0.08 μ g/g \equiv drinking water As level of 10 μ g/L²

Background: Arsenic contamination in Bangladesh

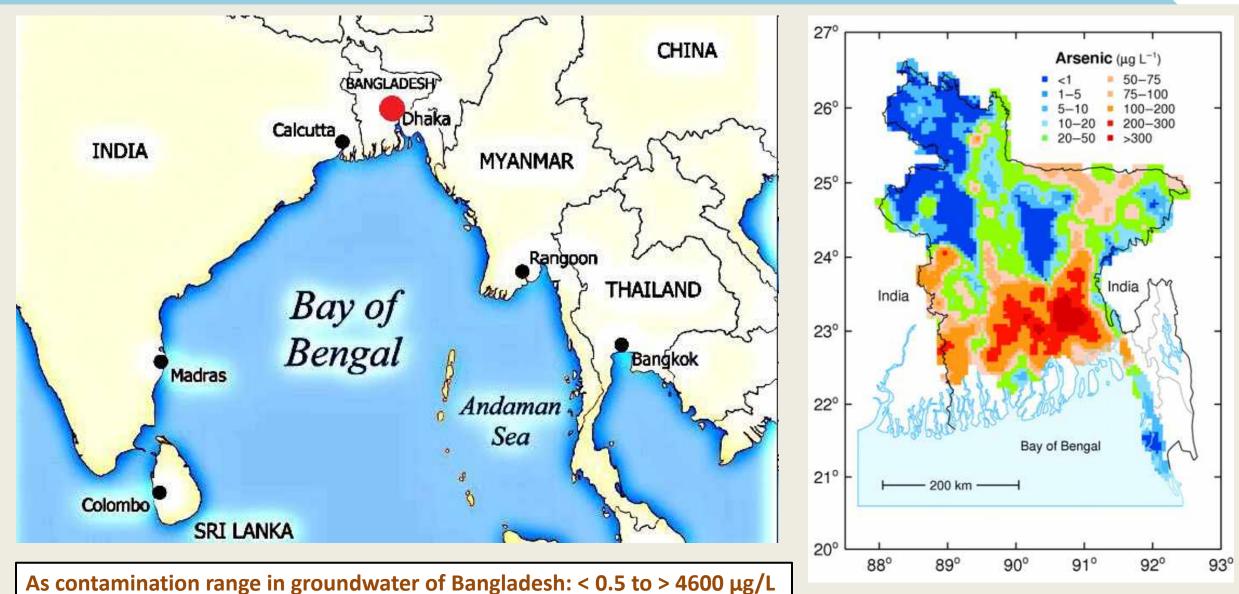


Image source: BGS and DHPE, 2001

Background: Impact of Arsenic on Agro-ecosystem in Bangladesh

Image source: Daily Sun, 2020

Agriculture sector contributes 14.74% to the country's GDP³ and employs 39% of total labor force⁴

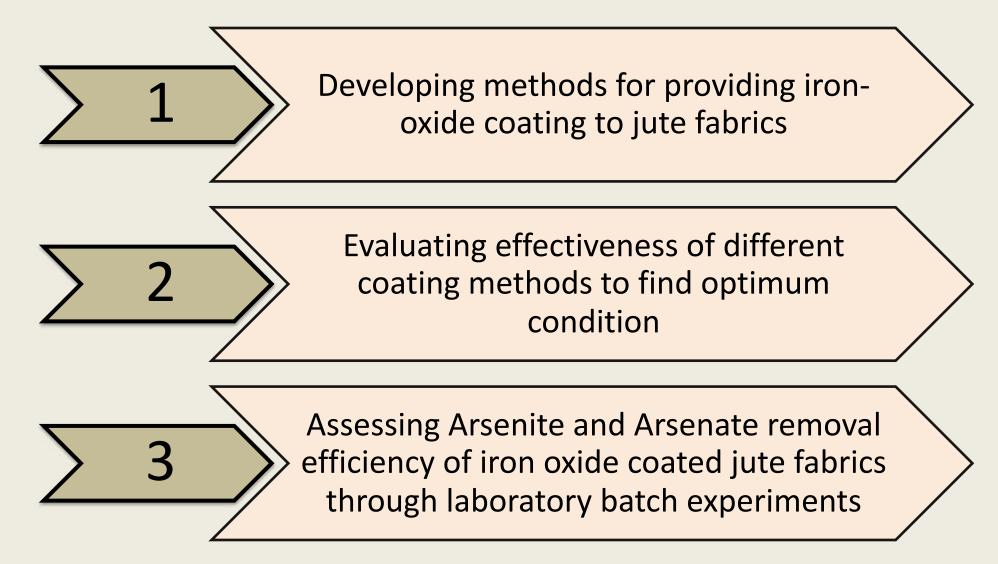
- □ 75.01% of total arable land used for growing rice⁵
- Dry season boro rice accounts for about 55.3% of the total rice production in Bangladesh⁶
- Probable accumulation of Arsenic in rice fields and subsequent plant-uptake, due to use of Arsenic contaminated groundwater for irrigation purpose³
- □ Average rice consumption: ~455 gm/person/day. ³
- Apparent exposure, adverse health impacts & decreased rice yield due to increased Arsenic exposure through food chain^{7, 8}
- Lack of practical & economic method for large scale Arsenic removal from irrigation water

Background: Studies on Arsenic Removal from Irrigation Water

I Norton et al. (2017)

- Employed AWD (alternative wetting and drying)
- Decreased As concentration in grains but undesirable change in other compounds

Polizzotto et al. (2014)


- Hypothesized utilization of in-channel physical structure for As removal from flowing irrigation water
- Suggested amending distribution channel with locally available jute mesh could reduce As loading to rice fields

Iron-oxide coated jute fabric could improve Arsenic removal

Image source: Polizzotto et al. (2014)

Study on Low-cost Arsenic Removal: Experimental Objectives

(*Ramim et al., 2017*)

Methodology

Materials (Jute Fabrics)

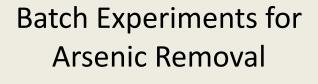
Properties of Jute Fabrics			
Color	White	Brown	
Mass Per Unit Area (g/m ²)	269.5	146.5	
Nominal Thickness (mm)	1.28	0.923	
Apparent Opening Size	Relatively large	Relatively small	
Price (CAD/m ²⁾	1.0	0.35	

Materials (Chemicals)

(As₂O₃) for preparing As(iii) stock solution

(Na₂HAsO₄.7H₂O) for preparing As(v) stock solution

Ferric Nitrate [Fe(NO₃)₃] for providing iron coating



Sodium Hydroxide [NaOH] for providing iron coating

Experimental Design

Preparation of Iron Coated Jute Fabrics

Experimental Design: Preparation of Iron Coated Jute Fabrics

Coating Method A

- 0.25 M ferric nitrate [Fe(NO₃)₃] solution was adjusted to pH 10.0 with 10.0 M NaOH solution
- Then jute fabric was soaked in the solution

Drying Procedure 1

heating at 110°C in an oven for 14 hours

Drying Procedure 3

drying at room temperature for one week

Coating Method B

- Jute fabric was first soaked in 0.25 M ferric nitrate [Fe(NO₃)₃] solution
- Iron was precipitated by addition of 10.0 M NaOH solution, adjusting to pH 10.0

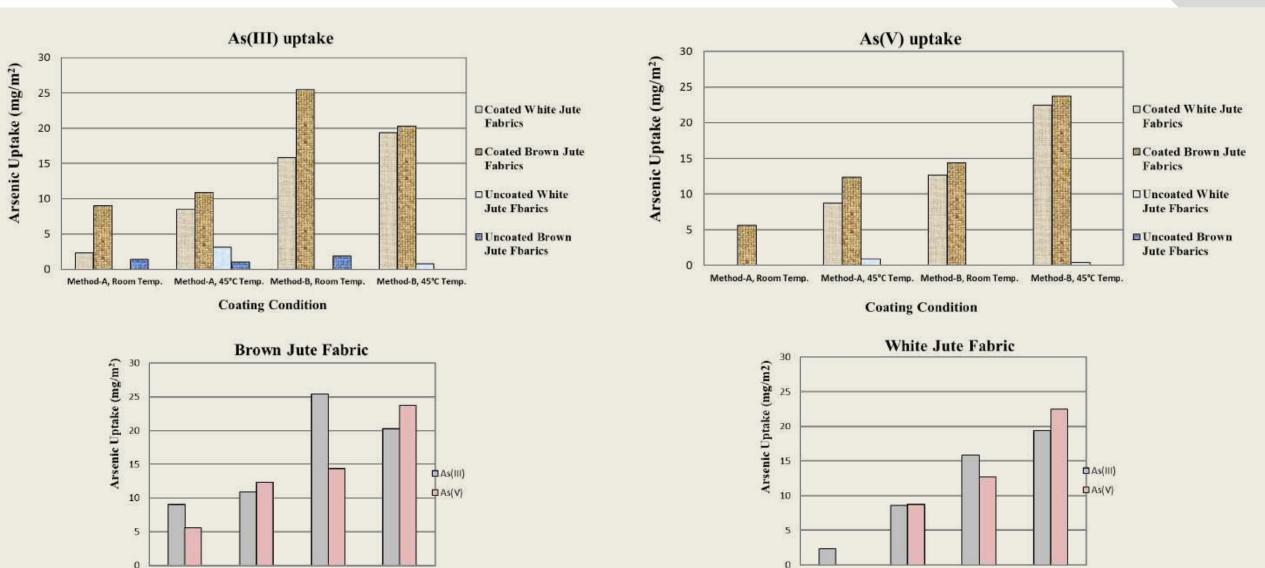
Drying Procedure 2

heating at 45°C in an oven for 24 hour

(Ramim et al., 2017)

Experimental Design: Batch Experiments for Arsenic Removal

One piece (2.5" x 5") of jute fabric (iron-coated and uncoated white and brown jute fabrics) was added to each beaker


Contents of beakers were stirred with a glass rod for 15 minutes and then kept at rest for 30 minutes

Samples were taken from the beakers for analysis of As using Atomic Absorption Spectrophotometer (Shimadzu, AA 6800)

Arsenic uptake/removal by jute fabrics was expressed as **mg As/m² of jute fabric**

(*Ramim et al., 2017*)

Results and Findings

Coating Condition

Method-B,

Room Temp.

Method-B, 45°C

Temp.

Method-A, Method-A, 45°C

Temp.

Room Temp.

Method-B, 45°C

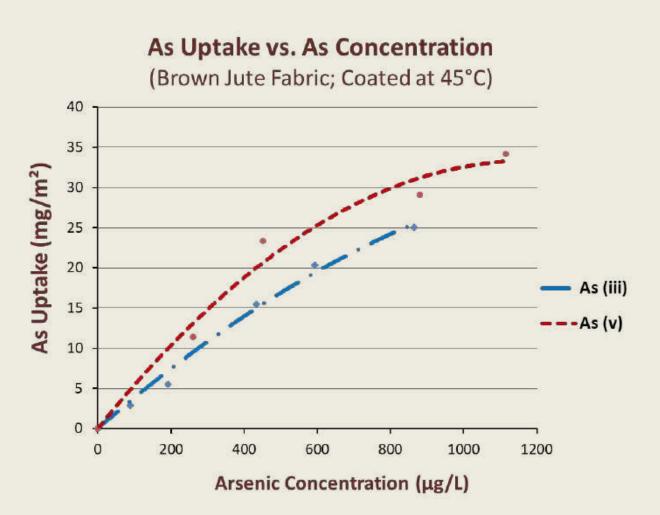
Temp.

Method-B,

Room Temp.

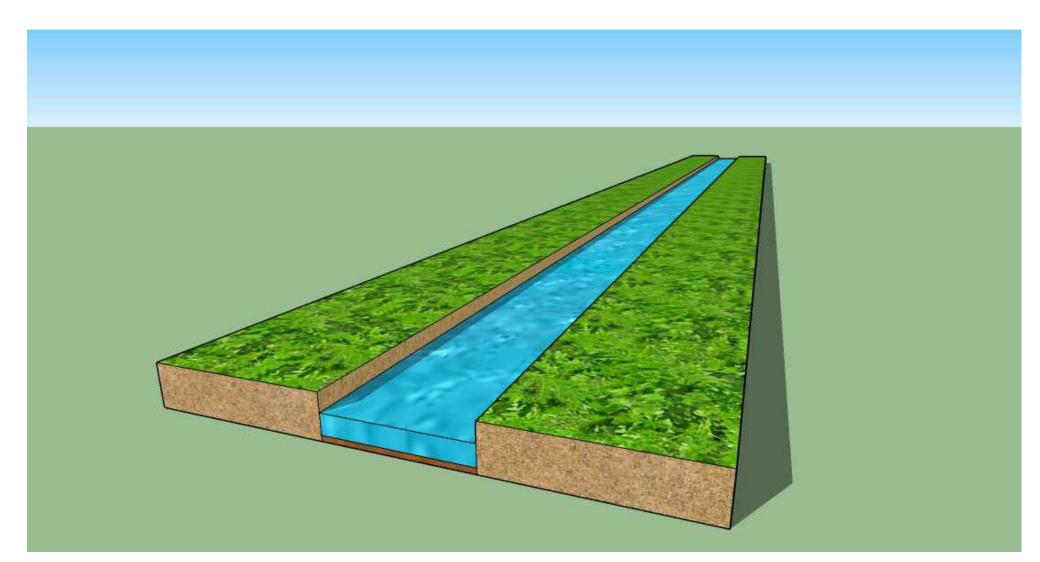
Method-A, Method-A, 45°C

Temp.


Coating Condition

Room Temp.

Results and Findings


Optimum Conditions

Arsenic removal	As(III) removal	As (V) removal	
Jute Fabric	Brown > White	Brown > White	
Iron oxide coating method	Method B	Method B	
Drying Method	Room temperature	Heating at 45°C	
Highest As Uptake	25.5 mg/m ²	23.7 mg/m ²	
Maximum % Removal	88.5%	67.5%	

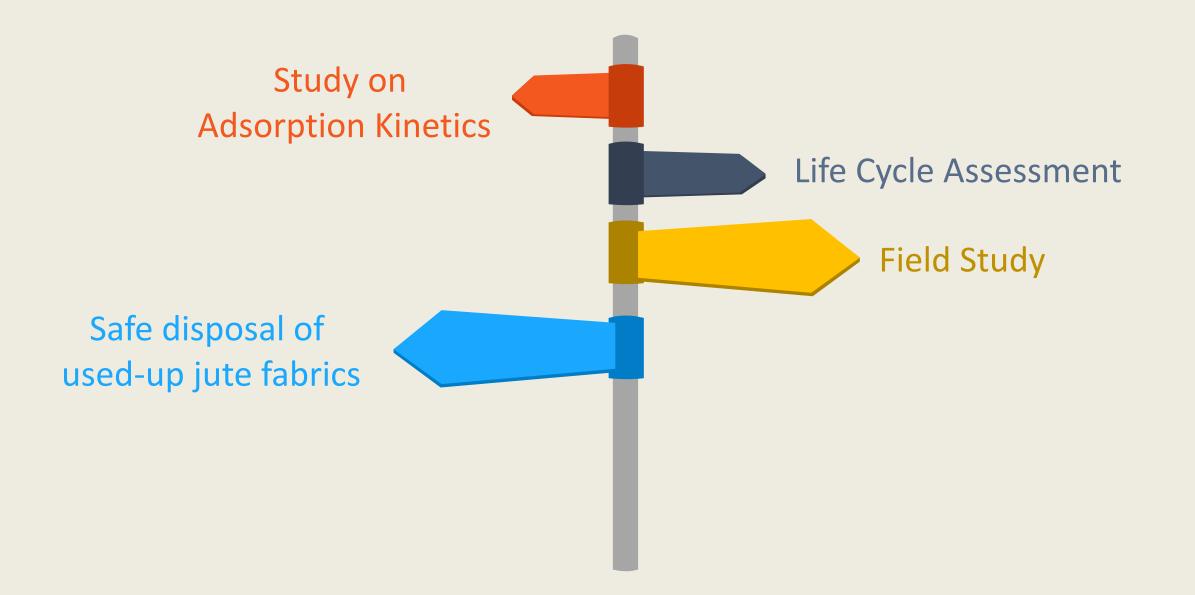
(*Ramim et al., 2017*)

Field Implementation Concept

A Proposed Model: Irrigation Channel with Iron oxide Coated Jute Lining

Follow up Researches

Akter et al. (2018)


- Use of iron oxide coated jute fabrics for Arsenic removal from groundwater under flowing conditions in a lab-scale experimental channel fabricated using PVC pipe
- Findings
 - Initial As concentration: ~230 μg/l
 - As removal: 40%
 - Impact of water flow rate: lower flow rate (and higher contact time) promotes higher removal
- > Challenges
 - Capacity of the coated fabrics decreases with time

Conclusion

Promising application of iron oxide coated jute fabric as lining material in irrigation channels for reducing arsenic loadings (both As(III) & As(V)) to agricultural soil

Suggestions for Future Work

Acknowledgment

Bangladesh University of Engineering & Technology

Principal Investigator:

Dr. Muhammad Ashraf Ali Professor Department Of Civil Engineering

Members of the Project:

- Habiba Ripa
- Tanjinur Akter

References

- 1. Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., & Divya, B. V. (2021). Arsenic contamination of groundwater; a global synopsis with focus on the indian peninsula. Di Xue Qian Yuan., 12(3), 101079. https://doi.org/10.1016/j.gsf.2020.08.015
- 2. Williams, P. N., Islam, M. R., Adomako, E. E., Raab, A., Hossain, S. A., Zhu, Y. G., Feldmann, J., & Meharg, A. A. (2006). Increase in rice grain arsenic for regions of bangladesh irrigating paddies with elevated arsenic in groundwaters. *Environmental Science & Technology*, 40(16), 4903-4908. <u>https://doi.org/10.1021/es060222i</u>
- 3. Bangladesh Economic Review 2022. Chapter 7: Agriculture. Dhaka Bangladesh.
- 4. International Labour Organization, ILOSTAT database. Data as of January 2021.
- 5. BBS (Bangladesh Bureau of Statistics); 2018. Agricultural Statistics Year book. Dhaka, Bangladesh.
- 6. BRRI (Bangladesh Rice Research Institute) 2006, Improvement of standard Boro rice. BRRI Annual Report for July 2005-June 2006. Plant Breeding Division, BRRI, Gazipur, Bangladesh.
- 7. Kabir, M. S., Salam, M. A., Paul, D. N. R., Hossain, M. I., Rahman, N. M. F., Aziz, A., & Latif, M. A. (2016). Spatial variation of arsenic in soil, irrigation water, and plant parts: A microlevel study. *Thescientificworld*, 2016, 2186069-14. <u>https://doi.org/10.1155/2016/2186069</u>
- 8. Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (oryza sativa L.). Environmental Science & Technology, 36(5), 962-968. <u>https://doi.org/10.1021/es0101678</u>
- 9. Ali, W., Mushtaq, N., Javed, T., Hua, Z., Ali, K., Rasool, A., & Farooqi, A. (2019). Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district larkana sindh, pakistan. *Environmental Pollution (1987), 245*, 77-88. <u>https://doi.org/10.1016/j.envpol.2018.10.103</u>
- 10. Banejad, H., and E. Olyaie. 2011. Arsenic toxicity in the irrigation water-soil-plant system: A significant environmental problem. Journal of American Science 7, no. 1: 125–131.
- 11. Mondal, S., Kumar, M., & Jain, S. (2020). Situation Paper On Arsenic Contamination In Water In Bihar. the South Asia Consortium for Interdisciplinary Water Resources Studies.
- 12. British Geological Survey (BGS) and Bangladesh Department of Public Health Engineering (DPHE) Arsenic contamination of groundwater in Bangladesh, Volume 2: Final report. D.G. Kinniburgh, P.L. Smedley, Eds. BGSReport WC/00/19 BGS: Keyworth, UK., 2001.
- 13. Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: A threat to sustainable agriculture in south and south-east asia. *Environment International, 35*(3), 647-654. https://doi.org/10.1016/j.envint.2008.10.004
- 14. Norton, G. J., Shafaei, M., Travis, A. J., Deacon, C. M., Danku, J., Pond, D., Cochrane, N., Lockhart, K., Salt, D., Zhang, H., Dodd, I. C., Hossain, M., Islam, M. R., & Price, A. H. (2017). Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. *Field Crops Research*, 205, 1-13. <u>https://doi.org/10.1016/jScr.2017.01.016</u>
- 15. Polizzotto, M. L., Birgand, F., Badruzzaman, A. B. M., & Ali, M. A. (2015). Amending irrigation channels with jute-mesh structures to decrease arsenic loading to rice fields in bangladesh. *Ecological Engineering*, 74, 101-106. <u>https://doi.org/10.1016/j.ecoleng.2014.10.030</u>
- 16. Ramim, S. S., Sultana, H., Akter, T., & Ali, M. A. (2017). Removal of arsenic from groundwater using iron-coated jute-mesh structure. Desalination and Water Treatment, 100, 347-353. https://doi.org/10.5004/dwt.2017.21897
- 17. Akter, T., Zahid, T.M., Saha, J., Nayeem, J., & Ali, M.A. (2018). Potential Of Iron-coated Jute Fabrics To Decrease Arsenic Concentration Of Groundwater In Irrigation Channel. 4th International Conference on Advances in Civil Engineering 2018 (ICACE 2018).