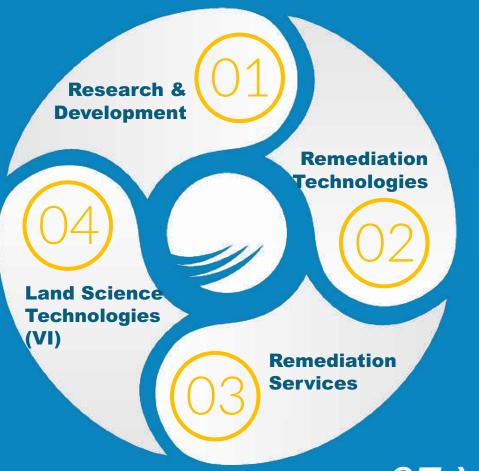


Enhancing Excavations, Rapid Remediation SABCS: Vancouver, BC


Keith Munsey – West Region Technical Specialist REGENESIS

Agenda

- Who is Regenesis?
- PetroFix What is it?
- How to use PetroFix to enhance excavations.
- Is PetroFix best for my site?
- Case Studies

WHAT WE DO We develop cutting-edge technologies to clean up soil and groundwater in-situ.

REGENESIS

TECHNOLOGY CLASSES:

- Enhanced Aerobic Biodegradation
- Enhanced Anaerobic Biodegradation
- In Situ Chemical Oxidation (ISCO)
- Bioaugmentation
- Metals Immobilization
- In Situ Chemical Reduction (ISCR)
- In Situ Sorption and Biodegradation 27 Years in Business/35,000 sites

Contaminant treatable with REGENESIS Products

SITE TY

Treating cor mitigating v We've seen ju

Dry Cleaners Chlorinated Solvent

	LAC		ISCO			Aerobic Bio		Anaerobic Bio			ISCR		
						ORC*							
Range of Treatable Contaminants	PlumeStop [®]	PetroFix*	RegenOx*	PetroCleanze	PersulfOx [®]	Advanced	3DME*	HRC*	HRC-X®	BDI*Plus	CRS®	S-MicroZVI"	
BTEX	21	1.000			Î.		1						
Benzene	9	0	9	9	0	9							
Toluene	9	9	9	0	9	0							
Ethylbenzene	9	0	00	8	8	00							
Xylene	9	0	9	0	9	9							
Patroleum Hydrocarbons													
Gasoline Range Organics (GRO) (Ca-Casta)	0	9	9	0	3	0							
Diesel Range Organics (DRO) (Ca-22-C3+36)	9	9	0	9	9	9			4				on and
Oil Range Organics (ORO) (C22-03)	9	9	9	9	8	3							
Creosote (coal tar)	0	9	0	0	9	9							
Oxygenates		h			1.1.				1 ₁₁₂				
Methyl tert-butyl ether (MTBE)	0	9	9	0	9	9			1	1 1		1	
Tert-butyl alcohol (TBA)			0	0	0	0				1 1			
Chlorimited Solvents			v				-		11	<u>l</u>			
		7	0		9	1		0	9		9		
Tetrachloroethylene (PCE) Trichloroethene (TCE)	9			0			00	0	ĕ	9	š	ő	
Dichloroethene (ICE)	0		0	0	0	_				0			
national second state and a second	2		9	2	000	2	00	8	8	000	8	9	
Vinyl chloride (VC) Tetrachloroethane	8		8	00	~	3	š	ő	š	× 1	ő	8	
Trichloroethane (TCA)	š		š	ő	š		š	S	š	š	š	~	
Dichloroethane (DCA)						0	š	š	õ	Š	š	8	
Carbon tetrachloride	8		8	00	8	~		Ğ	š	- × -	š	Ğ	
Chloroethane	š		ő	ő	š	9	00	š	ě		8		
Chloroform	ŏ		ő	ő	ŏ	-	õ	S	õ		š	8	
Chloromethane	š		õ	ő	ő		6	õ	S		ő	ø	
Chlorotoluene	ě.		ő	ő		9	000	Š			š	ő	
Methylene chloride	000		ő	Ğ	00	~		Ğ	00		6	Š	
Dichloropropane	ŏ		Ğ	0	Š		õ	G	ŏ		ŏ	ő	
Dichloropropene	õ		ö	0	ø		õ	6	õ		õ	Ğ	
Hexachlorobutadiene			Ó	ø			ŏ	Ğ	š		ő	Ğ	
Trichloropropane	8		Ö	õ	8			0	0		ő	Ö	
Bis(2-chloroethyl)ether	Ø		0	0	0		00	0	0		0	6	
Bis(2-chloroethoxy)methane	0		0	0	0		9	0	9		0	00	nt of De
PAHe													
Acenaphthene				9	9								A 4 4 4
Acenaphthylene	0	0	0			0							Hydrocar
Anthracene	8	00	00	00	00	8							
Benzo(a)anthracene	š	š	ő	õ	ø	õ							
Benzo(a)pyrene	ő	ő	ő	ő	S	š			-			-	ted Solver
Benzo(b)fluoranthene	ŏ	ő	ő	6	ø	ŏ	-					-	
Benzo(ghi)perviene	Č,	Ğ	Ö	õ	õ	õ							
Chrysene	8	ŏ	ø	õ	ø	ő							alkanes
Dibenzo(a,h)anthracene		Ö	õ	ø	3	ø			-				
Fluorene	8	ŏ	ő	õ	ŏ	ŏ							rgetics
Naphthalene	ŏ	G	ő	õ	ø	õ							
Phenathrene	Č.					9							
Pyrene	S	00	00	ŏ	00	S							y Metals FOS, PFO
Aromatics										1			y interesting
10/2/041/02/04/07/07/07/07/07/07/07/07/07/07/07/07/07/		10 11			1		1	1	(C) (C)	r: r		1	
2-chlorophenol	2		~	0	2	2						-	FOS DEO
2.4-dichlorophenol	9		9	0	0	2						-	
2.4-dinitrophenol	0		2	2	0	0			-			-	
4-chloro-3-methyl phenol	0		9	0	9	2							
4-iso-propyltoluene	0		0	0	0	0						-	
4-nitrophenol	S		9	9	9	9							

t of Defense lydrocarbons ed Solvents alkanes getics Metals OS, PFOA)

REMEDIAL APPROACHES OFFERED:

DIRECT PUSH INJECTION

- In-Situ Chemical Oxidation (ISCO)
- In-Situ Chemical Reduction (ISCR)
- Bioaugmentation
- In Situ Sorption & Biodegradation
- Enhanced Aerobic Bioremediation
- Enhanced Anaerobic Bioremediation
 REGENESIS[®]

HORIZONTAL DRILL:

- ISCO
- ISCR
- Bioaugmentation
- In Situ Sorption & Biodegradation
- Enhanced Aerobic Bioremediation
- Enhanced Anaerobic Bioremediation

WELLS

- ISCO
- ISCR
- Sorption
- Enhanced Anaen Bioremediation

EXCAVATION

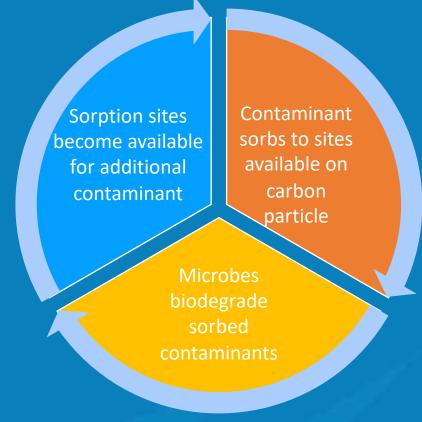
• Soil Mixing &

Handling

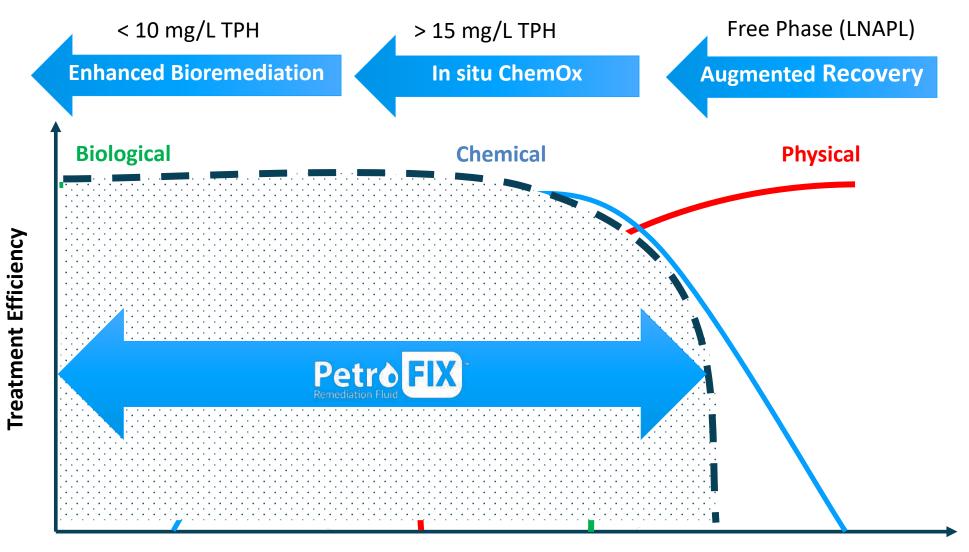
Evolution of Activated Carbon For In Situ Hydrocarbon Remediation

• Micron scale activated carbon (1-2 μm \varnothing) and water suspension, +30%

- Slow and rapid release electron acceptors (NO₃ and SO₄) in separate bucket
- Ships in totes and drums



Mode of Action

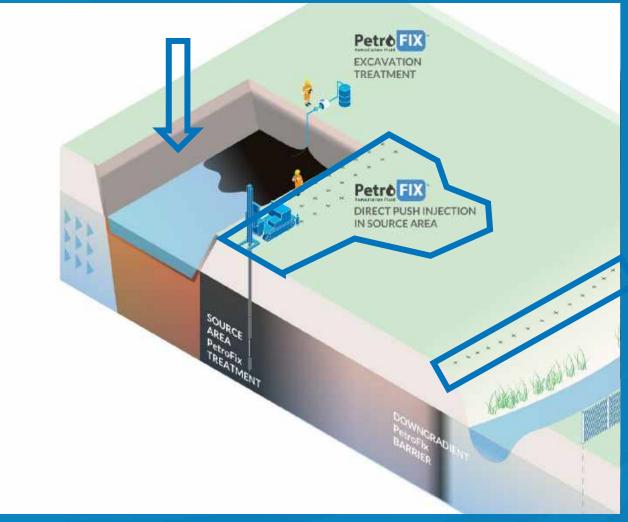

Dual Function Liquid Activated Carbon Amendment Consisting of:

- 1-2 μm micron-sized activated carbon particles and slow-release sulphate electron acceptor
- 2. Nitrate and sulfate electron acceptor mix
- 3. Carbon adsorption life extended as stimulated or natural biodegradation progresses

Treatment Range for PetroFix

Contaminant Concentration

PetroFix is Designed to Easily Inject Into an Aquifer

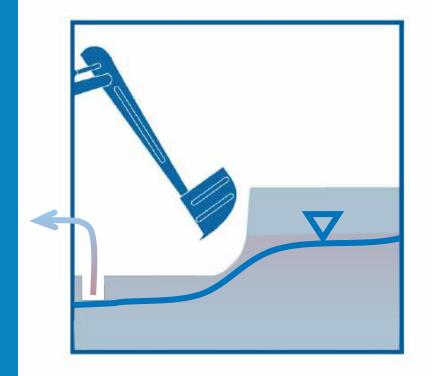


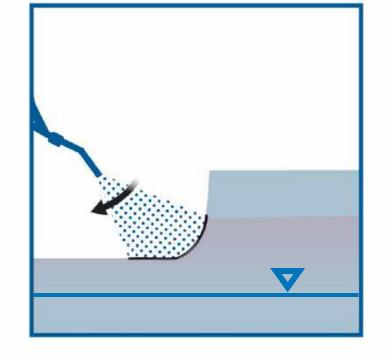
Typical Application Scenarios – Applies to In Situ Spill Response and Typical Remediation Sites

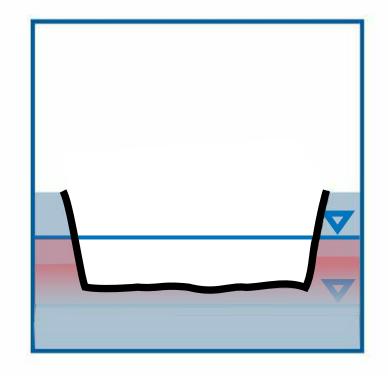
- Spray or Mix PetroFix in conjunction with emergency or remedial excavation of source soils
- PetroFix grid around point of loss post recovery to halt migration of contamination, or grid injection to treat existing groundwater plume
- PetroFix Barrier to protect a property boundary or water body

Benefits

- ✓ Remediation of plume
- ✓ Protection of sensitive receptors
- Controlling plume migration
- ✓ Passive long-term treatment


Topical PetroFix Application to excavations


- Topical application of PetroFix® onto the excavation base and sides
- Prevent contamination of the granular backfill
- Stops the infiltration and spread of contaminated groundwater in the pipe-bedding.



Preventing recontamination

Preventative, Risk Mitigation Tool

Problems

Leaks cause liability transfer issues when negotiating leases.

Risk of diesel/oil entering groundwater and crossing site boundaries.

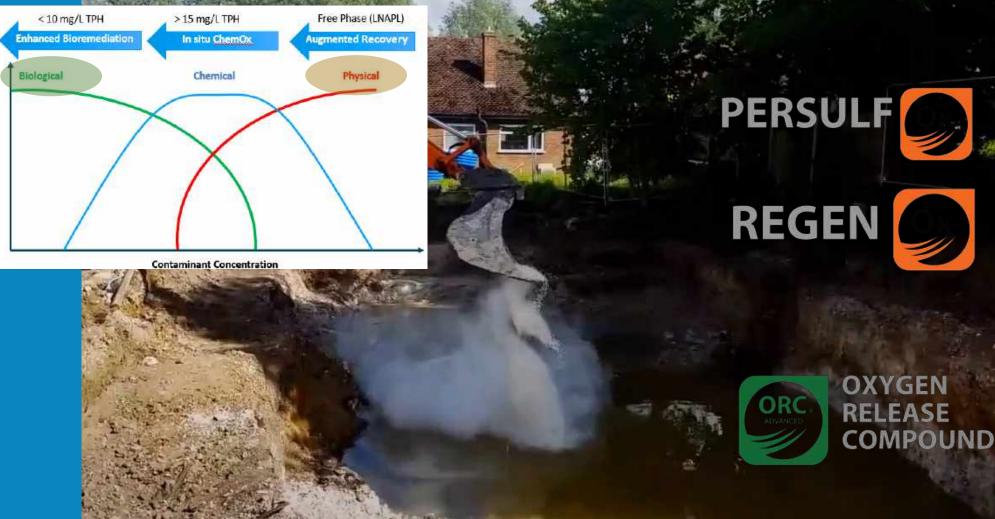
Clean-up cost using traditional spill response techniques is challenging if the site is commercially active PetroFix instantly reduces the risk and spread of pollution, avoiding environmental liability.

Solutions

Liquid form means easy application by spraying or pouring into tank bedding.

Non-hazardous and compatible with all underground infrastructure.

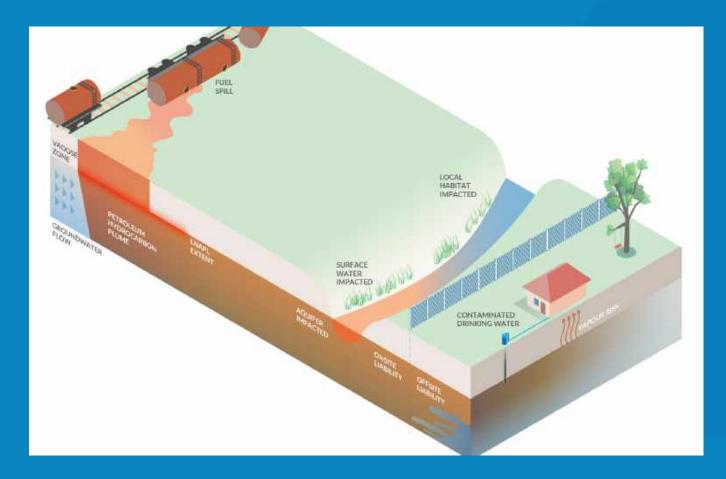
Can replace the water that would be added to achieve the tank bedding gravel's compaction levels.


Tank basin pre and post treatment

"Is PetroFix right for every site?"

Freatment Efficiency

PETROFIX APPLIED INTO TRENCH FOLLOWING TRUCK ROLL-OVER


CASE STUDY: PetroFix Used For *In Situ* Emergency Response Scenario to Reduce BTEX to ND

Summary

• Approach: Spray and Mix Application Type: Tanker Truck Roll-Over into Ditch • Goal: Remediate and Reconstruct **Irrigation Trench** • **Specifics:** In Situ Emergence Response for **Rapid Remediation**

Background

- A semi-truck hauling gasoline and diesel overturned into a dry irrigation ditch in MT.
- Diesel tanks ruptured and released into the ditch, impacting the shallow water table with BTEX and other constituents
- 77 meter of Irrigation ditch impacted with #2 diesel and red-dyed diesel and ditch had hydraulic connections to Yellowstone River
- 230 meter² excavation and 800 tons of impacted soils removed.

In Situ Emergency Response – Truck Roll Over and Diesel Spill

- Irrigation ditch needed to be remediated and reconstructed within 45 days due to irrigation and spring planting season
- 1,090 kg PetroFix then sprayed on side walls and four feet of soils to prevent movement of dissolved contamination.
- Irrigation ditch reconstructed after PetroFix application
- BTEX, TPH and TEH at 8 sampling points reduced below screening levels x 2 events
- NO FURTHER ACTION ACHIEVED -Irrigation ditch opened again.

Innovative Combined Solution to Speed BTEX and TPH-G Remediation at Former Gas Station Site

CASE STUDY: Innovative Combined Solution to Speed BTEX and TPH-G Remediation at Former Gas Station Site

Former Gasoline Station: Fort Dodge, IA

- Hard clay soils resulted in little attempt to treat past releases – silty and clayey
- 186 m². excavation water would infiltrate slowly
- Property transaction required remediation
- Benzene max was 16,200 $\mu g/L$ and ranged down to 1,290 $\mu g/L$
- Closure goal was 290 µg/L

Excavation polish with PetroFix

Former Gasoline Station: Fort Dodge, IA

- Combined Remedy included:
 - Excavating contaminated soils to ~.5 m bws
 - Original plan was to use ORC Advanced pellets applied to promote biodegradation of PHCs
 - PetroFix released -
 - 1,635 kg PetroFix spray-applied to walls and floor of excavation pit
 - 500 kg ORC-A pellets to help with DO
 - Back-filled with clean soil
- Closure Achieved

Excavation polish with PetroFix

Key Take Aways

- PetroFix can enhance excavations by providing sorption sites and nutrients to mitigate risk of recontamination and stimulate bioremediation.
- The sorptive capacity of PetroFix reduces the extent of impact during emergency response situations and can be quickly sprayed into open and active excavations.
- Pretreating areas where petroleum spills are likely could reduce the amount of time and cost necessary to remediate in at the time of an incident

Keith Munsey

Kmunsey@Regenesis.com 916-312-3204

West Region Technical Specialist REGENESIS

