

AGENDA

- 1. Introduction
- 2. Climate Change Projections and Risks in BC Regions
- 3. Contaminant Fate and Transport Under a Changing Climate
 - 1. Lower Mainland Case Study
 - 2. Okanagan Case Study
- 4. Adapting BC Contaminated Sites to Climate Change
- 5. Key Take-Aways

Introduction

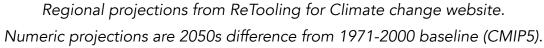
- Climate change is already affecting BC:
 - √ Heat waves
 - ✓ Wildfires
 - ✓ Extreme weather (rainfall, wind, snow)
 - √ Flooding
 - ✓ Landslide / rockslide / soil erosion
 - ✓ Drought
 - √ Sea level rise
- Variable climate impacts for different regions of BC.
- Potential impacts on contaminants behaviour, affecting contaminants fate and transport, plumes stability, risk assessments and remediations.
- Need to adapt BC contaminated sites to the changing climate.

South and West Coast Regions

- Projections
 - ✓ 2.5 to 3 times as many days over 25°C
 - ✓ 15% less summer rain by 2050s
 - ✓ 10% more rain in the fall
 - ✓ More intense and frequent extreme weather
 - ✓ Decrease in snowpack
- Possible Impacts
 - ✓ Increased risk of flooding
 - ✓ Increased risk of wildfire
 - ✓ Increased risk of landslide and soil erosion
 - √ Sea level rise

Skeena Region

- Projections
 - ✓ 8 times as many days over 25°C
 - ✓ 30% fewer frost days
 - ✓ 15% more rain in the fall
 - ✓ More intense and frequent extreme weather
 - ✓ Decrease in snowpack
- Possible Impacts
 - ✓ Increased risk of flooding
 - ✓ Increased risk of wildfire
 - ✓ Increased risk of landslide and soil erosion
 - √ Sea level rise

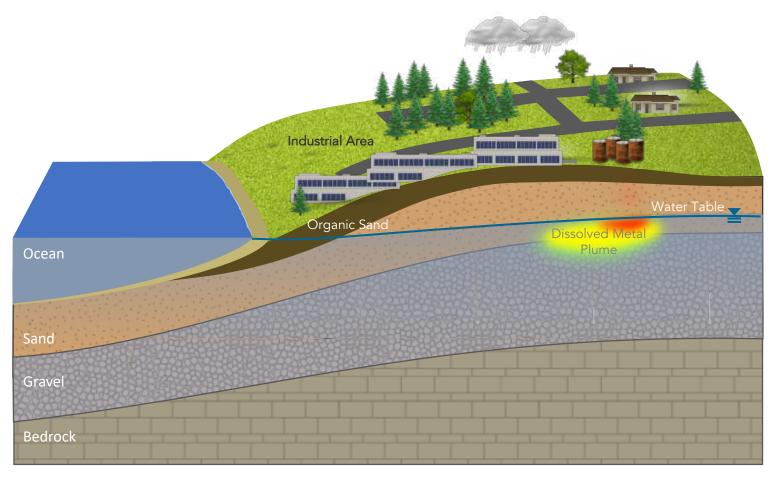


Okanagan and Boundary Regions

- Projections
 - ✓ 3 times as many days over 30°C
 - ✓ 10% less summer rain by 2050s
 - √ 15% more rain in the spring
 - ✓ More intense and frequent extreme weather
 - ✓ Decrease in snowpack
- Possible Impacts
 - ✓ Increased risk of drought
 - ✓ Increased risk of wildfire
 - ✓ Increased risk of flooding
 - ✓ Increased heat stress

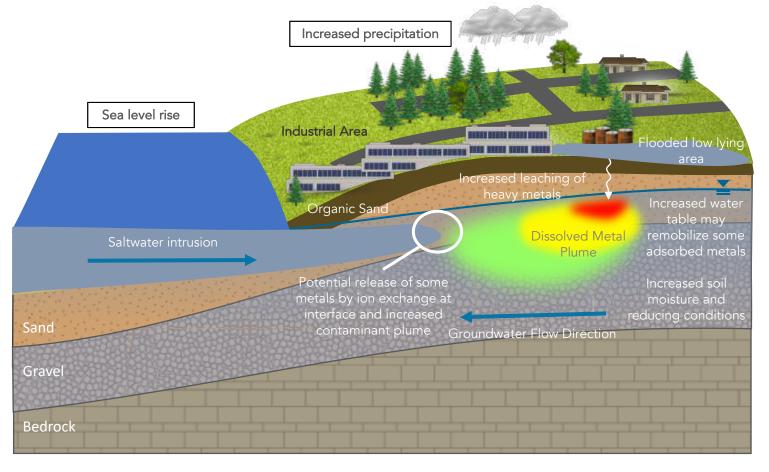
Northeast, Omineca and Cariboo Regions

- Projections
 - ✓ 2 to 3 times as many days over 25°C
 - ✓ 15 to 30% more rain in the fall and spring
 - ✓ More intense and frequent extreme weather
 - ✓ Decrease in snowpack
- Possible Impacts
 - ✓ Increased risk of drought
 - ✓ Increased risk of wildfire
 - ✓ Increased risk of flooding
 - ✓ Increased heat stress

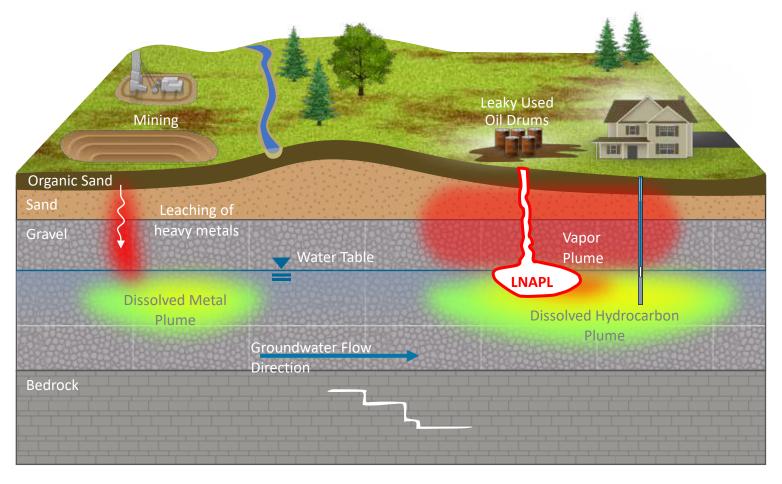

- Climate change impacts on fate and transport of contaminants are:
 - √ Complex
 - ✓ Challenging to predict
 - ✓ Site-specific
- Requires an understanding of:
 - √ Site-specific groundwater recharge
 - ✓ Site geology
 - √ Site contaminant properties
 - ✓ Site contaminant source location
 - ✓ Site contaminant transport processes
- Two Conceptual Site Models (CSM) examples:
 - √ Coastal BC

 Lower Mainland
 - ✓ Interior BC → Okanagan

Example 1 of CSM in the Lower Mainland

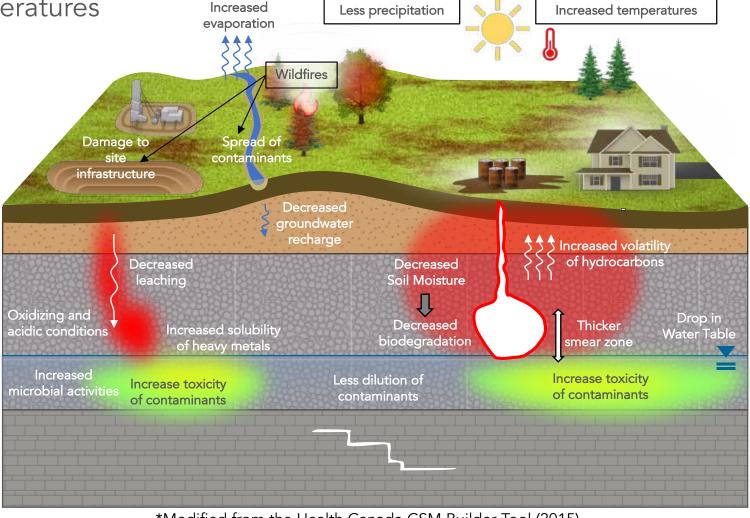


Potential Impacts of Climate Change on Contaminated Sites in the Lower Mainland


Sea level rise

Flooding

Example 2 of CSM in the Okanagan Region

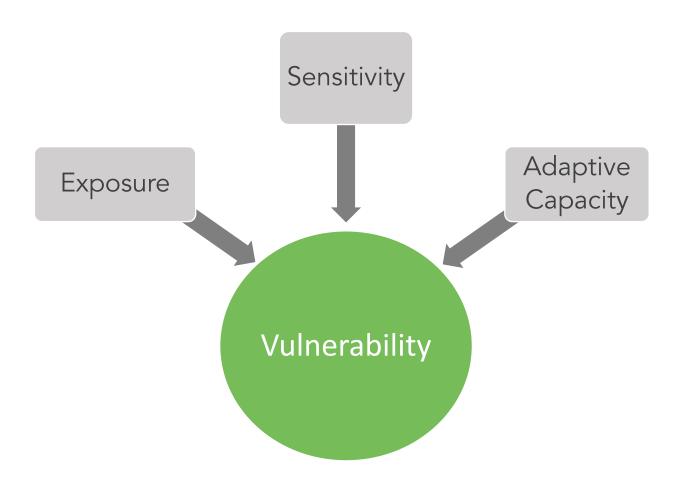


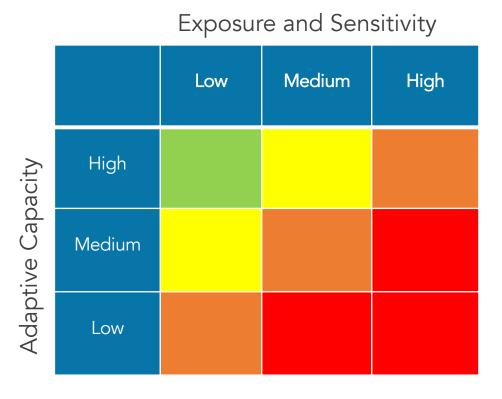
Potential Impacts of Climate Change on Contaminated Sites in the Okanagan Region

• Increased temperatures

Drought

Wildfires



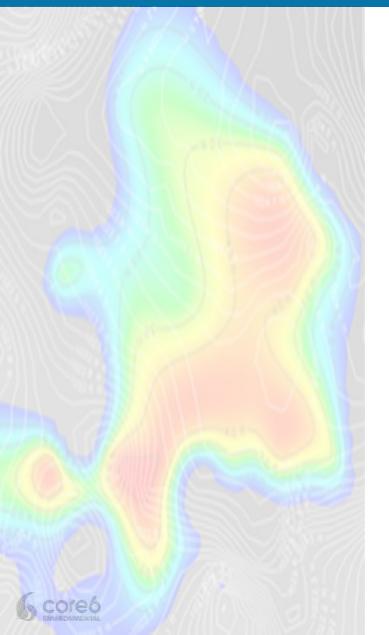


^{*}Adapted from State of Washington Department of Ecology Adaptation Strategies for Resilient Cleanup Remedies

Climate Change Site-Specific Vulnerability Assessment

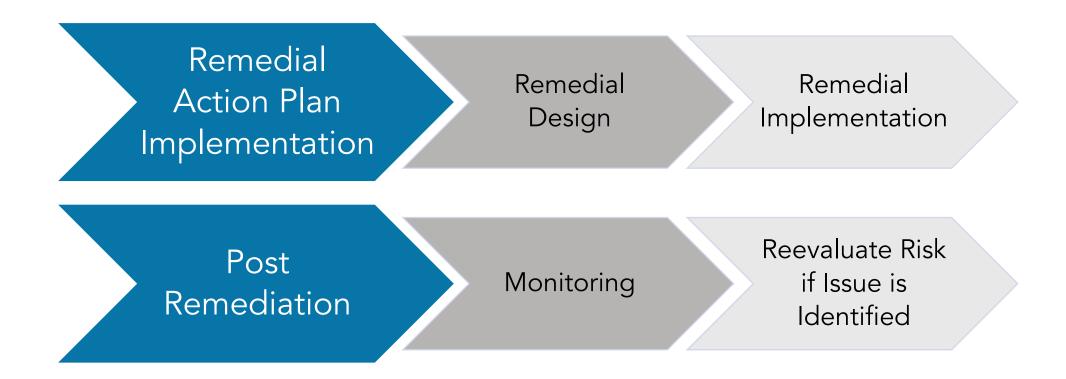
Climate Change Site-Specific Risk Assessment

- What is the risk to the site?
- Conceptualize the site for in-depth knowledge
- Identify AECs and categorize the impacts of each AEC (onsite and offsite) by determining probability and potential consequences.


Climate Change Site-Specific Risk Assessment

- Identify risk to site
 - ✓ Low risk only requires monitoring
 - ✓ Moderate risk requires some adaptation measures, remediation, additional monitoring
 - √ High to very high risk potential severe impact requiring remediation

Magnitude of consequence


		Low	Medium	High
Probability of impact	Low			
	Medium			
	High			

Feasibility Study and Remedial Action Plan (RAP)

- Screen and evaluated potential adaptation and remediation options.
- Select the best option.
- Ensure option's resilience to climate change factors over appropriate timeline.
- Prioritize AECs and associated timeline for implementation.
- Create RAP

^{*}Adapted from State of Washington Department of Ecology Adaptation Strategies for Resilient Cleanup Remedies

Key Take-Aways

- Variable climate change projections and impacts in different regions of BC.
- Effects of climate change on contaminant fate and transport are complex and site-specific.
- A good understanding site-specific fate and transport processes is key.
- Make your contaminated site projects more resilient to climate change by conducting Vulnerability Assessments.
- Select more sustainable and resilient remediation options by completing a Feasibility Study.

Resources and References

- UN Intergovernmental Panel on Climate Change (IPCC)
- CCME Guidance on Good Practices in Climate Change Risk Assessment
- Interactive maps, GIS layers, projection reports (iMapBC, ClimateData.ca, ClimateAtlas.ca, ArcGIS/ESRI, Metro Vancouver)
- BC Protocols
- BC Contaminated Site Regulation (CSR)
- Retooling for Climate Change, https://retooling.ca/
- <u>Adaptation Strategies for Resilient Remedies guidance</u> (Ecology, 2017).

