Recent Trends and Critical Issues for Assessment of Vapour Intrusion Pathway

SABCS Soil Vapour Forum July 8, 2008, Vancouver, BC

Dr. Ian Hers Golder Associates Ltd.

Assessment Challenge

- Identify buildings/sites with potentially complete pathway for vapour intrusion (VI)
- Determine whether indoor vapour presents adverse impacts/risks to those in buildings
- Use the right tool kit of methods and approaches
- Do this is way that is sufficiently certain, efficient and cost effective

The Recent Context

- Vapor intrusion (VI) is a *potential* exposure pathway at sites with volatile chemicals (many sites!)
- Perception and potential for breathing "toxic" vapours makes this a challenging pathway
- Increasing number of sites with demonstrated VI including several high profile sites with large chlorinated solvent plumes below residential areas
- VI has caught the attention of regulators, lawyers and public (several large lawsuits, Cambridge Ontario 100M, Quebec site 250 M, Redfields 400 M) <u>http://www.tceblog.com/posts/1147841386.shtml</u>

Historical Overview

- It has been a 20 year process for:
- Recognition
 Science
 Experience
 Guidance
- Knowledge improving but questions (and misconceptions!) remain

IAQ = indoor air quality

What do we know (from observations)

- Many chlorinated solvent sites with significant VI impacts, much smaller number of petroleum sites (aerobic biodegradation)
- Large degree spatial variability in groundwater and soil vapour; and temporal variability in soil vapour and indoor air
- Significant VI impacts for range of building types and foundations (buildings generally depressurized, flux controlled by soil)
- USEPA VI database has contributed significant to understanding of pathway – 4 yrs, 44 sites, over 2000 data points

Comparison J&E –AFs to Empirical Data (Groundwater AF, Chlorinated hydrocarbons)

Redfield, Single Point vs Average Alpha (Redfield Site)

Courtesy David Folkes, Envirogroup

Comparison J&E - AFs to Chlorinated and Petroleum Hydrocarbon Empirical Data (soil vapour aresidential, filtered)

Soil Vapor Alpha - Residential- Chlorinated Solvent - Filtered

Wall Township, NJ

 $\sim 2000 \text{ ug/m}^3$, Commercial $\sim 1500 \text{ ug/m}^3$

Wall Township, Indoor Air

Max indoor PCE concentration!: Residential houses ~ 2000 ug/m³, Commercial (1 building) ~ 1500 ug/m³

• PCE concentration indoor air (ug/m³)

TCE Results

Pro's & Con's Different Media

Media	Pro's	Con's
Soil	Data may be available, low cost, low temporal variability	Partitioning highly uncertain, high spatial variability
Ground water	Data may be available, low cost, moderate temporal variabilityPartitioning uncertain, not representative if unsaturated zone source	
External soil vapour	Avoids partitioning, more direct indication exposure, may integrate sources	Spatial variability moderate to high, temporal variability moderate, method issues
Subslab vapour	Closer to receptor, avoids lateral variability	Intrusive, cost, small scale spatial variability can be high
Air	Most direct indication (only for existing building)	Intrusive, cost, temporal variability moderate to high, background issues

Relationship Groundwater and Soil (or lack thereof) (Paul Johnson)

Meta-data Analysis – Co-located soil-soil vapor

Key Approximate relationship between measured & predicted vapor **points:** concentrations. Measured vapor > 10X less than predicted.

Soil Vapour Data

- More direct indication of potential exposure, can integrate sources (if in right location!), potentially less conservative, but ...
- Significant challenge is observed spatial and temporal variability in soil vapour concentrations:
 - Capping effect of building
 - "Rain shadow" and drier soils below building
 - "Oxygen limitations" leading to reduced biodegradation
 - Barometric pumping
 - Influence of building (subslab fill, utilities, advection)
- Deeper near source data least affected by variability (shallow external data may not be representative)
- Poor sampling methods also a problem

Time

<u>Geosyntec</u>

Temporal Trends

Courtesy Bill Wertz, NYDEC

Conceptual Hydrocarbon Vapour Profile

Blayne Hartman, H&P Geochemistry

O, 9/05

Aerobic Biodegradation

Santa Maria, CA Study (Is O₂ Transport Below House Slow or Fast)

Paul Johnson, ASU, Paul Lundegard, Unocal and Paul Dahlen, Golder

Sub-Slab O₂ Transport Experiment

Sub-slab O₂ Recovery

Diffusion most important, wind induced O₂ recharge also important. Rainfall can affect recharge

Paul Johnson, ASU, Paul Lundegard, Unocal and Paul Dahlen, Golder

74

00

CASPER, WY SITE

[A CLASSIC CASE OF SIGNIFICANT PEOPLE INTRUSION]

Guidance Overview

- Health Canada tiered approach based on soil, groundwater and soil vapour; supporting PQRA and SSRA spreadsheets
- Alberta and Ontario Tier 1 soil and groundwater guidelines, Tier 2 soil vapour
- Draft USEPA 2002 OSWR VI Guidance current status will not be updated, but several white papers/tools to be produced
- ITRC VI Guidance (2007) multiple lines of evidence
- ASTM E2600 Phase 1 screeening approach and pre-emptive mitigation

Health Canada VI Guidance

- Preliminary Screening for pathway completeness
- Secondary Screening using *Attenuation factor (AF)* "*alpha" curve* approach for soil type and depth
- Adjustments for:
 - Aerobic biodegradation (10X)
 - Mass flux for groundwater
 - Source depletion for soil
 - Building properties
- Tier 3 process? (not defined)

Soil vapour AF = C_{air}/C_{vapour} (measured)

Groundwater AF = C_{air}/C_{vapour} (predicted)

Proposed Bioattenuation Adjustments for Health Canada Guidance (simpler approach may be adopted)

Media	Contamination	Criteria	Bioattenuation Adjustment Factors (BAF)
Groundwater	Dissolved - Low	$\begin{array}{l} \text{Benzene} < 0.1 \text{ mg/L} \\ \text{F1} < 5 \text{ mg/L} \\ \text{F2} < 1 \text{ mg/L} \end{array}$	100X for Ds > 1 m
	Dissolved – High	Benzene < 1 mg/L F1 < 15 mg/L F2 < 5 mg/L	10X for $Ds > 1 m$ 100X for $Ds > 3 m$
	NAPL		10X for $Ds > 5 m$
Soil Vapour	Dissolved	Cg < 1 mg/L	10X for $Ds > 1 m$ 100X for $Ds > 1 m$, $Dp < 1 m$
	Transition dissolved & NAPL	$\begin{array}{l} Cg > 1 \ mg/L \\ Cg < 50 \ mg/L \end{array}$	10X for $Ds > 2 m$
	NAPL	Cg > 50 mg/L	10X for $Ds > 5 m$
Soil	All		20X for $Ds > 1 m$

Note: BAFs may only be applied when there is no significant capping effect.

 $C_g = BTEX + F1 + F2 + CH_4$

Ds = Separation distance between contamination source and building

Dp = Distance from contamination to soil gas probe

Pathway Assessment – Possible Future Refinements

- Need better screening approach to categorize sites
 - No brainer there is a problem
 - Likely a problem lets not think to much about it
 - Grey zone more assessment needed
 - Not a problem let's move on (biodegradation critical here – source strength, depth, capping effect)
- One size does not fit all, more flexibility needed in media and models that may be used (biodegradation, source depletion, building properties)

Pathway Assessment – Possible Future Refinements

- Need to get a better handle on soil vapour spatial and temporal variability and influence of building – more research is needed in this area
- Sampling and analysis tools and practice needs to be improved – hopefully next session will contribute to this
- Updated surrogate approach for TPH
- Greater standardization for mitigation design
- Use of more sophisticated models

Meta-data Analysis – Influence of Background

First Nations Site Strategic Soil Vapour Sampling

- Diesel NAPL above water table, sand and gravel, teacherage with basement
- Health Canada protocol requires minimum depth ¹/₂ way between building and contamination

Soil Vapor Methods

- Similar or higher level of care than groundwater
- Preference small diameter probes
- Carefully seal boreholes
- Leak tracer tests to test seals and sampling trains

"Geoprobe"

Soil Vapour Tool Box

- Low flow (100-200 ml/min) and low vacuum (< 5 in H₂0) purging and sampling
- Vacuum chamber (lung box) sampling warranted in some cases
- Analytical methods carefully chosen (sorbent tubes, Summa canisters – hardware key iss
- QC samples (equipment blanks, duplicates)

Helium Tracer Data

21 of 270 samples had leaks >5% (100% passed shut-in test) All but two were corrected using Helium and Mass Balance Geosyntec consultants